
Information flow metrics analysis in object oriented programming
and metrics validation process by RAA algorithm

Abdul Jabbar ⇑, Subramani Sarala
Department of Information Technology, Bharathiar University, Coimbatore, Tamil Nadu, India

a r t i c l e i n f o

Article history:
Received 26 April 2012
Received in revised form 2 July 2012
Accepted 12 August 2012
Available online 14 September 2012

Keywords:
Information flow metrics
Object oriented programming
Rule induction
Ant colony algorithm
Rule accuracy algorithm
Object oriented information flow

a b s t r a c t

Transparent data flow metrics and control flow metrics had no main concern which to be handled by a
compiler. Nowadays similar hardware and multithreaded coding is increased. Consequently, both data
flow and control flow become more important in analyses the reusability and maintainability. The pres-
ent analysis of source code and the ability of metrics are incompetent to predict the actual amount of
information flow complexity in the modules. In this work, object oriented metric IF-C focuses on the
improved information flow complexity estimation method, which is used to evaluate the data flows in
object oriented source code and decrease the effort of maintainability and reusability. The object oriented
information flow complexity incorporates various internal and external flows in object orientation. The
adequacy of software metrics is validated by the rule accuracy algorithm which is based on rule induction
technique. The technique applied in the software metrics dataset that has been selected using fitness pro-
portionate selection algorithm. The competence and efficacy of the software metrics have verified by the
predefined rules. The rules have if and then clause which hold metrics adequacy standards.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As computer systems become gradually more interlinked with
aspects of human life, promotion of software failures rise, thereby
the need of software assurance research and practice are enhanced.
With the assistance of metrics the developers recognize various re-
sources and efforts needed. To sustain the software quality, software
metrics have a major responsibility that includes maintainability, ef-
fort and productivity. Prognostic ability of software metrics is attrac-
tive, thus it is an important factor of the maintainability,
productivity, quality and effort for cost estimation [2,4]. Information
flow is the course of many information groups that are significant to
one module or whole program. Information groups include input
and output information. Fenton and Pfleeger [28] described the
information flow contain both inter modular and intra modular
attribute in the system. According to object oriented programming
paradigm the concept is similar but it differs in structure. To quantify
the information flow metrics from the object oriented programming
source code is complex task. However in this work attempt to resolve
this issue using improved information flow metrics [3] concept.

Object oriented paradigm the flows initiate in different ways.
Primarily, principles of object oriented programming offer
enhanced methodology to manage information. It contains various

types of data blocks which contain statements that are allocating
and managing information in the execution. Basically, the blocks
commence several flows in the source code which is predictable
from the source code designing. The fundamental concept of infor-
mation flow occurs changes on information during execution.
Accordingly, in this work focuses various forms of information ac-
cessed and retrieved between various blocks and within the blocks.
The movement of information defines in the fan-in and fan-out
framework. It counts the various flows initiate and end from a
block. Programming paradigm information is managed in a storage
units called variable. Variable reading, writing and executing in the
code are called information manipulation. OOP paradigm object
provide enhanced information processing scheme to the source
code. When an object, A, sends a message to object B, by means
of the information flows from A to B and it is called forward flow.
Correspondingly, when B replies to it mean by there is a flow of
information from B to A and it is called backward flow [32]. Pro-
posed method it counted as fan-in and fan-out based on their
direction. Further, it has discussed the calls between blocks are de-
fined by object oriented principles.

A number of software metrics proposed to analyze object ori-
ented programming. In [33,34] explained various metrics that ana-
lyze the object oriented programming which linearly count the
features in the source code. The proposed method widely considers
the linearity issues of earlier metrics. Object oriented program-
ming contains various blocks which developed based on
predefined methodology. Information moves within the blocks

0965-9978/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2012.08.004

⇑ Corresponding author.
E-mail addresses: Jabbar123p@gmail.com (A. Jabbar), sriohmau@yahoo.co.in (S.

Sarala).

Advances in Engineering Software 54 (2012) 30–37

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2012.08.004
mailto:Jabbar123p@gmail.com
mailto:sriohmau@yahoo.co.in
http://dx.doi.org/10.1016/j.advengsoft.2012.08.004
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


and between blocks. The proposed metrics count the each motion
in the source code. The movements are forced or initiated by any
other blocks considered as object oriented method/procedural call.
Basically stored procedure calls (SC), method calls inside the class
(IC), method calls outside the class (OC) and constructor calls (CC)
are the calls in the OOP concept. The object oriented features such
as association, aggregation, abstraction, generalization, interface
and inheritance are considered under the fan-in and fan-out or ob-
ject oriented call when it initiate any transfer within the code.
More over the proposed method reflects the important of the lines
of code (LOC) metrics [3].

The validation of software metrics is very problematic as well as
it has complex process. From the previous works, a number of ap-
proaches have been proposed for validation of software metrics
adequacy. Limitation of existing validation technique in every per-
spective the Rule Accuracy Algorithm (RAA) has been proposed [1].
RAA includes number of optimized rule which induced best data
according to the predefined rule from set of data. Rule induction
technique is the common form of knowledge discovery from huge
data in unsupervised learning systems [6,18–20]. RAA allows for a
more complicated evaluation of software metrics. From the given
software metrics data set, the best metrics data are induced by
RAA and find the average. A database generates using software
metrics where the instances and the set of variable referred from
a number of programming units given by github; it is open-source
free public repositories, code review, graphs and much more.

2. Mechanism in existing work

In the last few years, a number of approaches under the name of
information flow complexity metrics have been developed, con-
tributing interesting outcome. The author [3] criticize the Henry
and Kafura measure [30] of Information Flow Complexity (IF-C)
which as,

Henry and Kafura IF-C ðMÞ ¼ length ðMÞ � ðfan-in ðMÞ

� fan-out ðMÞÞ2 ð1Þ

As of the optimistic elevation of the work, product of fan-in fan-
out in their measure IF-C, the modules with both a low fan-in low
fan-out are, inaccessible from the system and hence have low
‘‘complexity’’ [28]. Fan-in shows how many modules reliably con-
trol a specified module; fan-out is number of modules that are reli-
ably controlled by another module [29]. Specifically fan-in of a
module M is explained, the number of local flows that discharge
at M, and sum of the number of data structures from which infor-
mation is retrieve by M. Also, the fan-out of a module M is the
count of local flows that originate from M, and sum of the number
of data structures that are reorganized by M.

Henry and Kafura measure criticized fractional view on a com-
prehensive information flow aspects. For capture specific view of
information flow structure include global and local information
and avoid length factor and refinement to the Henry and Kafura
measure of information flow complexity for a module by Martin
Shepperd [28] is

Shepperd complexity ðMÞ ¼ ðfan-in ðMÞ � fan-out ðMÞÞ2 ð2Þ

Shepperd’s refinements challenge to confine an exact vision of
information flow configuration and reliable with analyzing hypoth-
esis. The experiential validation studies scrutinize how closely the
counts associate with a definite procedure measure, which is
improvement instance. The correlation between development time
and the Henry–Kafura measure was not significant for Shepperd’s
data but pure-information flow-structure is considerably related.
Thus the level of information flow is directly interrelated with
development time [28]. Multiplication in (1) and (2), either fan-in

or fan-out is zero, complexity measure shows zero. The inadequacy
of (1) and (2) in various code levels, thereby a new technique intro-
duced that involves the information flow and its complexity. Flow
of information and its complexity are attempt to measured [3]
using metrics such as fan-in (F_in), fan-out (F_out), sum of fan-in
and fan-out (F_(I + O)), procedure called in a program (PC) and code
length (CL) [3].

The both (1) and (2) information flow complexity metrics have
identified major deficiencies in numerous aspects. Multiplication
leads some serious issues as well as the framework not organized
in all information representation in the code. Accordingly a new
information flow metrics IF-C has been proposed [3], which consid-
ers structural programming source code features. The proposed
work formulates based on the concept of new information flow
metrics IF-C. The work input information was classified different
ways. Primarily, local variable LR, it will access and use the data
of within the procedure. The data access is possible both static
and dynamic mode. The limitation of the LR is access only in the
procedure. Fig. 1 shows the LR and its flow in procedure. There
are n local variable LR1 LR2 LR3 . . . LRn and its value x1, x2, . . . xn, it
is using in the various process in the source code.

Secondly, global variable reading GR, it will access only once in
the source code and use everywhere in the source code as static
and dynamic mode. Fig. 2 depicts GR and its flow of the source
code. There are n global variable GR1 GR2 GR3 . . . GRn Re used in
the source code.

Fig. 2 refers the global variable using dynamically in the pro-
cess. Local variable used as static method that also declared before
the execution of the source code. Procedural concept has an impor-
tant feature that data can share within the procedure. For this
parameter data PR can read statically or dynamically in the execu-
tion. Fig. 3 express the dynamic reading data for the process.

IF-C explained the input information from the source code as lo-
cal information, global information and passing parameter. These
are defined as in fan-in method, which is used as input information
of a module. Fan-in is the number of information admittance by a
module. Following system process the output information is pro-
duced. Those are classified as local variable writing, global variable
writing and parameter writing. After the process change the input
variable in to information and stored as variables. The output infor-
mation has marked in Fig. 4. The input variable has explained as lo-
cal, global and parameter variable also used to represent the output
information.

2.1. Framework for information flow metrics

In [3] discussed about Information flow that can be measure in
competent to quantify the information for an entire operation of
data within the execution of source code. Flow of information
and its complexity are measured using metrics such as fan-in
(F_in), fan-out (F_out), sum of fan-in and fan-out (F_(I + O)), proce-
dure called in a program (PC) and code length (CL). These metrics
measure the information flow and complexity of executable code
within the procedures. Henry Kafura and Shepperd IF-C, either

Fig. 1. Local variable reading and usage in the source code.

A. Jabbar, S. Sarala / Advances in Engineering Software 54 (2012) 30–37 31



Download English Version:

https://daneshyari.com/en/article/568318

Download Persian Version:

https://daneshyari.com/article/568318

Daneshyari.com

https://daneshyari.com/en/article/568318
https://daneshyari.com/article/568318
https://daneshyari.com

