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This paper presents a methodology that combines the power of an Artificial Neural Network and In-
formation Theory to forecast variables describing the condition of a regional system. The novelty and
strength of this approach is in the application of Fisher information, a key method in Information Theory,
to preserve trends in the historical data and prevent over fitting projections. The methodology was
applied to demographic, environmental, food and energy consumption, and agricultural production in
the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking con-
ditions in human and natural systems. However, available data are often so far out of date that they limit
the ability to manage these systems. Results indicate that the approaches developed provide viable tools
for forecasting outcomes with the aim of assisting management toward sustainable trends. This meth-
odology is also applicable for modeling different scenarios in other dynamic systems.
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1. Introduction

Determining how to assess and manage aspects of a system
towards a sustainable path is one of the most critical challenges in
sustainability science (Kates, 2011). Accordingly, developing future
scenarios is an important management need (Boyko et al., 2012). A
key element in this effort is developing plausible projections given
an assessment of historical data to identify trends representing
typical system conditions. Artificial neural networks offer great
promise for handling time series forecasting and form the basis of
our approach.

Artificial neural networks (ANN) are powerful data-driven
modeling techniques based on iterative algorithms that have the
ability to estimate a function from a great array of dependent or
independent inputs (Zaihong et al., 2012). They provide an advan-
tage over many traditional statistical approaches because there is
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no need to find a causal relationships among variables. ANNs are
useful in a variety of applications from data processing and
regression analysis to adaptive learning and forecasting, yet like
any estimation technique, ANNs are prone to over-fit forecasted
data (Krogh, 2008). In response to this challenge, we developed a
methodology to “bound” the forecast and ensure that ANN pro-
jections describe typical patterns found in the historical data. Here,
we use Fisher information to characterize system condition as
defined by patterns in variables.

Fisher information is a measure of the amount of information
about system behavior that is present in data (Fisher, 1922). While,
its roots are in statistical estimation theory, Fisher information has
been adapted to provide a means of monitoring variables which
characterize system behavior by collapsing them into an index that
can be monitored to assess dynamic order (patterns in data), sys-
tem regimes and regime shifts (Fath et al., 2003; Karunanithi et al.,
2008). For this application, Fisher information was initially
employed to assess the stability of the patterns (how much they are
changing) in the historical data. The trends in the index also served
as a constraint to ensure that level of stability found in the historical
data is preserved during the time series projection. The central
purpose of this research effort is to develop a data-driven fore-
casting method that ensures that the projections contain patterns
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consistent with the historical behavior of the system.

As a study case, we applied the method to data collected on a
regional system in south-central Colorado. This work is a follow up
to the San Luis Basin (SLB) Sustainability Metrics Project initiated in
2006 by the U.S. Environmental Protection Agency (USEPA), Office
of Research and Development (USEPA, 2010). Using publically
available data and four integrated metrics, researchers computed
these metrics to assess trends in key aspects of sustainability:
ecological footprint representing environmental burden (Hopton
and White, 2012), green net regional product accounting for eco-
nomic well-being (Heberling et al., 2012), emergy which measures
energy resources and flow through the system (Campbell and
Garmestani, 2012), and Fisher information captures the stability
of the system condition (Eason and Cabezas, 2012). The research
team found that the dynamics of the region were fairly steady yet
slowly moving away from sustainability. The stability was due to
such drivers as relatively low diversity in land use, high bioavail-
ability and a relatively stable economic base (Hopton et al., 2010).
One of the primary goals of the study was help inform decision
making on land and environmental management issues. However,
data availability presented a key limitation and resulted in the
production of sustainability metrics with a lag of three or more
years. Therefore, these calculations were not the optimal for
stakeholders to make near-time informed management decisions
(Heberling and Hopton, 2014). Accordingly, the team highlighted
the need for forecasting methodologies to aid in assessing plausible
scenarios and alternative futures. This research article presents a
method of developing and applying a forecasting methodology to
aid in producing scenarios for the SLB. The approach presented
teams a dynamic autoregressive artificial neural network (DARX)
with Fisher information in order to extrapolate time series from
2011 to 2025 while preserving the trends found from 1969 to 2010.
This approach simulates a “business as usual” scenario that elimi-
nates both unexpected patterns and model over fitting. Although
this initial installment focuses on developing a baseline scenario,
the methods can be adapted to assess alternate futures and other
types of systems.

2. Methods

The core method involves two main processes: (1) Character-
izing the system given data series from 1969 to 2010 and (2)
forecasting of a baseline scenario for the period 2011—2025. Process
1 involves using Fisher information to assess trends in the system
variables. Process 2 consists in designing (simulation, calibration,
cross-validation, test, and optimization) and applying the archi-
tecture of the constrained neural net to extrapolate trends found in
process 1. Both processes incorporate techniques to handle data
quality and quantity issues (e.g., sparseness) inherent in real sys-
tems by pre and post processing the variables describing an area of
study.

2.1. Artificial neural nets

Inspired by biological neural networks, researchers from
different disciplines design artificial neural nets in order to address
a variety of problems, such as pattern classification, clustering,
optimization, and prediction among others (Jain et al., 1996). The
analogy between the artificial and the biological system is the high
capacity of interconnection (neurons), learning (what is more
probable), generalizing (rules), and making decisions (model).
These characteristics provide a powerful tool for answering ques-
tions about the future, based on past behavior. In that sense, neural
nets are an excellent forecasting choice that does not need prior
knowledge of the relationship among data (not always evident in

observations), and that infers from examples in spite of noise
content (Darbellay and Slama, 2000). Further, neural nets have
been applied successfully to model a wide variety of real-world
applications, such as: the prediction of the stock market index
(Guresen et al., 2011), forecasting energy consumption (Kankal
et al, 2011) and estimating wind power output (Tu et al., 2012).
Other examples include the forecast of environmental variables
such as the net ecosystem metabolism (a proxy for system tropic
state) within a freshwater wetland (Young II et al., 2011), water
quality (Zaihong et al., 2012), and municipal waste generation
(Antanasijevi¢ et al., 2013). As mentioned, Artificial Neural Net-
works (generally called neural nets) have demonstrated promise in
the forecasting arena (Maier et al., 2010; Guresen et al., 2011;
Zaihong et al., 2012; Antanasijevi¢ et al., 2013). However, when
used for projections, they are sometimes prone to over fitting and
produce results that are outside of the realm of realistic system
behavior (Voyant et al., 2011). Hence, it is critical that mechanisms
be developed to help establish appropriate constraints on
projections.

2.2. Fisher Information

Integrated indicators or metrics have proven a very useful tool to
present a scientific, straightforward, consistent, and multidimen-
sional view of a system (Bond and Morrison-Saunders, 2010). One
critically important characteristic is the patterns in variables
describing the condition of the system. Fisher information (Fisher,
1922), denoted I in Equation (1), was selected to measure the dy-
namics and stability (Pawlowski et al., 2005) of the system under
study.

1 [dp(s)]?
I_/E[T] ds (1)

Derived from Information Theory, Fisher information is a sta-
tistical quantity that measures the degree to which a parameter
(e.g., s: state of a system) can be estimated (Frieden, 2004; Mayer
et al., 2007) from a given data set, where p(s) is the probability of
observing a particular state (condition) of the system. Fisher in-
formation (I) has been adapted to assess dynamic order (patterns in
data) and applied to various types of systems for evaluating such
aspects as urban and regional sustainability (Eason and Cabezas,
2012; Gonzalez-Mejia et al., 2012; Gonzalez Mejia et al., 2014).
Further details on the derivation and computation of the index may
be found in Karunanithi et al., 2008 and the USEPA (2010). Simply
stated, higher I implies greater predictability of the system's state at
a point in time (Mayer, 2008) and higher information content in the
data set.

According to the Sustainable Regimes Hypothesis, well-
functioning systems are predictable. The patterns may fluctuate
within a limited range exist in regimes but they remain relatively
steady through time; accordingly, the time averaged Fisher Infor-
mation is constant, (dI/dt=0) (Karunanithi et al., 2008). Taking this
a bit further, a system is considered to be in a stable regime when
values are within two standard deviations (2sd(I)) from the mean
value I computed for the historical data (Equation (2)). A regime
shift exists only when the I drops by more than two standard de-
viations from I as shown in Equation (3).

Stable period =(I) — 2-sd(I) < I(t) <1+ 2-sd(I) (2)

Regime shift=I(t) <I — 2-sd(I) 3)

The choice of two standard deviations from the mean as a
criteria is based on an application of a Chebyshev's Theorem, which
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