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This study proposes a new PSOS-model based damage identification procedure using frequency domain
data. The formulation of the objective function for the minimization problem is based on the Frequency
Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimi-
zation (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; conse-
quently, the convergence of the PSOS becomes independent of the heuristic constants and its stability
and confidence are enhanced. The formulated hybrid method performs better in different benchmark
functions than the Simulated Annealing (SA) and the basic PSO (PSOy). Two damage identification prob-
lems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss
and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage
location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator)
was identified by PSOS providing good results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This work is an updated and revised version of the conference
paper [1], which presented a modified PSO using a direct search
complex algorithm to control the PSO heuristic parameters. The
present article introduces an improved version of that algorithm,
called hybrid PSO Simplex algorithm, for damage detection. The
main advantage of this new approach is its lower computational
cost (number of function evaluations and CPU time) when com-
pared with Ref. [1].

The methods for damage detection (DD) using dynamic re-
sponses can be classified into two large groups in accordance with
their dependence (or not) on a structural model: the methods based
on signals (experimental) and the methods based on models [2,3].

One of the signal-based methods is the technique of Novelty
Detection [4], whose principal objective is to extract features from
dynamic data that characterize the state of the structure. This ap-
proach allows only for the lowest level of damage detection, i.e.,
deciding whether the damage has occurred or not. The other meth-
ods based on signals, i.e., methods of thermal and magnetic field,
visual inspection, acoustic emission, X-rays, ultrasound methods
and Eddy’s currents technique [5], need an a priori knowledge of
the damage location and the guarantee of access to any part of
the structure. Besides these limitations, the signal-based methods
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can only detect damage in (or) near the structure surface and work
relatively well in small-sized structures. The main advantage of
these techniques is that they avoid modelling errors and high com-
putational costs involved in numeric simulations. However, these
methods are inefficient when applied to large structural systems,
where the techniques based on the vibratory response of the struc-
ture are more promising due to their global character. On the other
hand, the methods based on models allow determining the damage
location and severity by the simultaneous use of mathematical
models of the structure and experimental vibration data [6].

The DD problem can be defined as a non-linear inverse problem
[7]. As the experimental data are usually limited, multiple solutions
that satisfy the formulation of the inverse problem can be obtained.
To overcome this difficulty, computational techniques, like Artifi-
cial Neural Networks (ANNs) [8,9] and Genetic Algorithms (GAs)
[10,11], among others, have been used to solve the DD task. The
central idea of these techniques is to substitute the inverse problem
by a group of direct problems. Such solution allows obtaining a rep-
resentation (vector) of the system, where the variations in the
parameters of the structure, owing to the damage, are heightened,
allowing for the identification of possible flaws. The drawback of
classical non-linear programming techniques, when applied to
DD, is that they are susceptible to converge to local optima and
therefore, they cannot be employed successfully in non-linear and
multimodal problems, such as the ones studied in this paper.

The main difficulty found in DD based on models is the presence
of errors in both the experimental measurements and the models
(modelling errors). In the first case, the effect of the errors can be
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reduced by using high-accuracy sensors and reliable signal mea-
suring to obtain the experimental data that will be used either dur-
ing the training process of the NNs, or in the definition of the
objective function employed in the GAs. The error in the Finite Ele-
ment Model (FEM) is normally reduced by the use of model updat-
ing techniques [12]. Another issue that must be addressed in
model-based DD is the damage model. In most cases, the damage
is simulated by either reducing the stiffness of individual elements
of the Finite Element Model (FEM) [13,14] or using simplified crack
models [15] and the linear fracture mechanics theory [16]. The
problems mentioned above have been the theme of current re-
search and generated the motivation for the present work.

In this study, the DD problem is defined as an unconstrained
non-linear mathematical programming problem, in which we
specify an objective function in terms of parameters related to
the physical properties of the structure. Knowing that the optimum
of the objective function is obtained when evaluated with true
parameters and using a hybrid PSO Simplex algorithm (PSOS) to
estimate them, it is possible to assess the state of the system.

A critical issue in using a heuristic approach to solve an optimi-
zation problem is the selection of an extreme excess of parameters
that control its performance [17]. In order to manipulate the PSO
parameters, Parsopoulos and Vrahatis [17] used the Differential
Evolution Algorithm (DEA) [18], but this method contains user’s
defined heuristics constants and, therefore, the convergence of
the combined algorithm is not totally independent of the heuristic
parameter selection and its computational cost is high. The present
article proposes a novel strategy for the proper choice of the PSO
constants based on the Simplex method [19]. Despite all the
known failures and inefficiencies of such method [20], it was used
here to manipulate the initial selection of the PSOS heuristic
parameters, and in this manner, the PSOS becomes independent
of these values. In addition, the combination produces improve-
ment with only few iterations of the hybrid algorithm (PSOS).
The use of the Simplex method has another advantage: it works
only with function values (it is a derivative free algorithm).

The proposed procedure aims to identify if single or multiple
damage has occurred, to determine its position inside the structure
and to estimate its severity (extension) using Frequency Response
Functions (FRFs) and PSOS.

This study is structured as follows: first, the hybrid algorithm
used in this work was introduced; next, three benchmark functions
were studied to assess the performance of the PSOS algorithm;
then, the damage identification problem, its formulation as a
non-linear optimization problem and its solution through PSOS
were discussed; subsequently, two DD numerical problems in
which we supposed that the initial model is a precise representa-
tion of the intact structure were analyzed; a non-linear system
was identified (Duffing oscillator) and finally our conclusions and
recommendations were presented.

2. The PSO

The Particle Swarm Optimization Algorithm is a member of the
wide category of swarm intelligence methods to solve non-linear
programming problems. It was recently proposed by Kennedy
and Eberhart [21] and Kennedy [22]. Since its introduction, many
applications to structural and multidisciplinary optimization have
been published. A review of PSO applications in solving optimiza-
tion problems in the area of electric power systems is presented in
[23]. Other applications to optimal building and design problem
can be found in [24]. Additional applications to structural shape
and size optimization are presented in [25-27]. The PSO algorithm
has recently been used to train ANNs in order to predict real-time
water levels and algal bloom in aquatic systems [28,29].

In the PSO there are several explicit parameters whose values
affect the manner in which the algorithm searches the problem
space [21-27]. These heuristic parameters impact the convergence
properties of the PSO, i.e., they may cause premature convergence
of the search. To overcome these problems, the performance of PSO
can be improved by controlling these constants, as explained in the
next sections.

2.1. PSO: basic parameters

In this work, the global asynchronous [26] version (with linear
inertia reduction) of the PSO algorithm was implemented to solve
our DD problem. The basic algorithm assumes that each particle
(candidate solution) in the population (swarm or set of N particles)
flies over the search space looking for promising regions of the
landscape, i.e., in a maximization problem, regions that possess
higher function values than others previously discovered. In this
context, the position of each particle is updated based on the social
information shared by the members of the swarm and each particle
attempts to change its position to a point where it has a higher cost
function value at previous iterations. The particles are manipulated
according to the following vectorial equations [27]:

pi’ﬂ :p;<+ yiﬂv (1)
vy, = 0 + Cyrand; (b} — p}) + Corand, (b — p}), (2)

where k indicates a unit pseudo-time increment, p represents the
position of each particle i (candidate solutions), pj ., is the position
of particle i at time k + 1, b, represents the best ever position of par-
ticle i at time k (best individual position), bf is the best position in
the swarm at time k (global best), 7, is the velocity of particle i at
time k and v}, is the updated velocity of particle i at time k+ 1.
All vectors in Egs. (1) and (2) are of dimensions m x 1, where m is
the number of optimized parameters, rand; and rand, are indepen-
dent random numbers (with uniform probability) between 0 and 1.
Parameters C; and C, control the flow of information between the
current swarm. If C, > C;, then the particle puts more trust in the
swarm, otherwise, it puts more confidence in itself. C; and C, are
known as the cognitive and social parameters, respectively. o is
the inertia factor (or inertia weight) that controls the impact of
the previous particle velocity on the current particle velocity [30].

The PSO algorithm proceeds by modifying the distance each
particle moves in each direction per iteration. In order to control
the step length of the algorithm (velocity) and to prevent the
explosion phenomenon [31], the value #i ,, = (pUB — pLB)/H was
used. In the above expression, 2/ is the particle’s maximum step
length, pUB and pLB are the upper and lower bounds of each parti-
cle and H is a parameter that controls the size of the step length. It
is worth noting that all the particle positions pi must be limited by
their lower and upper bounds (pLB, pUP).

The literature [17,21-23,30] proposes using 0< w<14,
Ci=C=2 with (; +(; <4 and 5< H< 10 to maintain a balance
between the global and local search capabilities of the algorithm.
In our implementation of the basic PSO (PSOy), a value of H=5
was selected. It was observed that this value worked satisfactorily
in all examples presented in this work. As it is known, the three
parameters o, C; and C, are problem-dependent [25,26]. Due to
this fact, even experienced PSO users have to perform exhaustive
testing to find the best set of PSO constants and less skilled users
may provide the algorithm with an improper set of parameters
causing its failure.

3. The Nelder-Mead algorithm

In this work, the original version of the Nelder and Mead Sim-
plex algorithm [19] was utilized, where n + 1 points (these points
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