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a b s t r a c t 

Acoustic modeling based on deep architectures has recently gained remarkable success, with substantial 

improvement of speech recognition accuracy in several automatic speech recognition (ASR) tasks. For dis- 

tant speech recognition, the multi-channel deep neural network based approaches rely on the powerful 

modeling capability of deep neural network (DNN) to learn suitable representation of distant speech di- 

rectly from its multi-channel source. In this model-based combination of multiple microphones, features 

from each channel are concatenated and used together as an input to DNN. This allows integrating the 

multi-channel audio for acoustic modeling without any pre-processing steps. Despite powerful model- 

ing capabilities of DNN, an environmental mismatch due to noise and reverberation may result in severe 

performance degradation when features are simply fed to a DNN without a feature enhancement step. 

In this paper, we introduce the nonlinear bottleneck feature mapping approach using DNN, to transform 

the noisy and reverberant features to its clean version. The bottleneck features derived from the DNN 

are used as a teacher signal because they contain relevant information to phoneme classification, and 

the mapping is performed with the objective of suppressing noise and reverberation. The individual and 

combined impacts of beamforming and speaker adaptation techniques along with the feature mapping 

are examined for distant large vocabulary speech recognition, using a single and multiple far-field micro- 

phones. As an alternative to beamforming, experiments with concatenating multiple channel features are 

conducted. The experimental results on the AMI meeting corpus show that the feature mapping, used in 

combination with beamforming and speaker adaptation yields a distant speech recognition performance 

below 50% word error rate (WER), using DNN for acoustic modeling. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Automatic speech recognition from distant microphones is a 

challenging task, because the speech signals to be recognized are 

degraded by the presence of interfering signals and reverbera- 

tion due to large speaker-to-microphone distance ( Yoshioka et al., 

2012 ). The conventional multi-channel enhancement techniques, 

such as beamforming, are widely employed to suppress noise 

and reverberation from the desired speech when multiple micro- 

phones (e.g., microphone arrays) are used to capture audio signals 

( Anguera et al., 2007; Veen and Buckley, 1988 ). 

In the context of ASR, the conventional speech enhancement 

methods are typically used as a pre-processing step to reduce mis- 
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match between a model trained using clean speech and the noisy 

features. Since these methods are designed to improve signal-to- 

noise ratio (SNR), or signal-to-interference-plus noise ratio, the 

performance of the speech recognizer will be sub-optimal. In case 

of multi-channel ASR, there have been studies on designing a 

beamformer with the aim of optimizing ASR performance. A tech- 

nique such as likelihood maximizing beamforming (LIMABEAM) 

( Seltzer et al., 2004; Seltzer and Stern, 2006 ) specifically optimizes 

array parameters using gradient descent to maximize the likeli- 

hood of the recognized hypothesis under an ASR speech model, 

given the filtered acoustic data. Recent research on LIMABEAM sug- 

gests no significant improvement using the standard LIMABEAM on 

large vocabulary distant speech recognition on the AMI meeting 

corpus and it is recommended to use a better optimization strat- 

egy for any LIMABEAM implementation ( Fox and Hain, 2014 ). 

Further, it is also possible to perform recognition from micro- 

phone arrays without employing any pre-processing steps. For 

example, each individual channel can be separately recognized, 

and the recognition hypotheses are combined using a confusion 
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network combination to select a word sequence with the highest 

probability ( Metze et al., 2014; Wölfel and McDonough, 2005 ). 

Channel selection approaches such as finding the channel produc- 

ing the maximum acoustic likelihood ( Shimizu et al., 20 0 0 ), or 

selecting the channel with the maximum confidence from its de- 

coded sequence ( Wolf and Nadeu, 2014 ), may be particularly useful 

when microphones are loosely specified in users’ environments. 

Since recognition needs to be performed before any hypothesis 

is selected or combined, these decoder-based approaches for 

recognizing multiple microphones are computationally demanding 

(i.e., multi-pass-systems) . 

Recently, acoustic models based on DNN have been shown to 

significantly improve the ASR performance on a variety of tasks 

when compared to the conventional Gaussian mixture model hid- 

den Markov model (GMM/HMM) systems. Several international 

challenges have recently been organized to attract researchers’ in- 

terest in providing the ASR solution in reverberant environments, 

such as the ASpIRE ( Harper, 2015 ) and CHiME challenge series 

( Barker et al., 2015; 2013 ). In those challenges, participants were 

encouraged to build state-of-the-art speech recognition systems 

that are robust to various environmental factors and recording sce- 

narios, while minimizing the impact of mismatch between train- 

ing and testing conditions. For example, the recent 3 rd CHiME 

challenge specifically addressed the far-field recordings from a 

mobile tablet device, captured using six microphones positioned 

around the tablet frame in real-world environments. It was re- 

ported that one of the most effective techniques, where signifi- 

cant gains have been achieved, is to transform the DNN features 

using feature-space maximum likelihood linear regression (fMLLR) 

( Hori et al., 2015; Sivasankaran et al., 2015 ), and some of the 

best scoring systems have used baseline DNN configurations for 

acoustic modeling ( Barker et al., 2015 ). Apart from DNN’s superior 

modeling capacity in acoustic modeling, a DNN which is trained 

with context-dependent phonetic targets can be used to produce 

neural-network-based features or bottleneck (BN) features. These 

features have been shown to be effective in improving the per- 

formance of ASR systems especially when exploited in combina- 

tion with traditional short-term spectral features, such as MFCCs 

or PLPs ( Seltzer et al., 2013; Yu and Seltzer, 2011 ). The BN fea- 

tures are usually extracted from one of the internal layers of DNN 

(with a small number of hidden units in comparison to the size of 

the other layers) and represent a nonlinear transformation (while 

usually reducing dimensionality) of the input features ( Grézl et al., 

2007; Yu and Seltzer, 2011 ). The stacked BN features which are ex- 

tracted from the cascaded DNN structures have been investigated 

on several ASR tasks, such as speech recognition of Cantonese 

spontaneous telephone conversations ( Karafiát et al., 2013 ) and 

speech recognition with minimum resource ( Zhang et al., 2014 ). In 

Liu et al. (2014) , the BN features were also used for far-field speech 

recognition. 

This paper introduces a nonlinear BN feature mapping approach 

by using the BN feature of a close-talking microphone (referred 

to as the individual headset microphone (IHM)) as a target for 

distant speech input. The DNN is used to map the noisy and re- 

verberant features to the BN-based features extracted from the 

close-talking input. Once the mapping is completed, the trans- 

formed BN features are extracted for training a new acoustic model 

( Himawan et al., 2015 ). The model-based combination of multiple 

microphones using the transformed BN features is proposed to in- 

tegrate the multi-channel inputs for acoustic modeling. For the fea- 

ture mapping approach, the fMLLR for speaker adaptation is ap- 

plied to the features prior to DNN training and to the transformed 

BN features in the stacked hybrid fashion ( Yoshioka et al., 2014 ). 

The fMLLR has been shown to be effective in both hybrid and 

tandem DNN-based systems for removing speaker variabilities and 

variations in the recording process, due to speaker-to-microphone 

distances and the use of different microphone channels ( Bell et al., 

2013; Swietojanski and Renals, 2014; Yoshioka et al., 2014 ). Al- 

though many recent speaker adaptation techniques for DNN have 

been proposed such as learning hidden unit contributions (LHUC) 

( Swietojanski and Renals, 2014 ), providing speaker identity vec- 

tors (i-vectors) along with regular ASR features as input to neural 

nets ( Saon et al., 2013; Senior and Lopez-Moreno, 2014 ), and in- 

corporating i-vectors to project the speech features into a speaker- 

normalized space ( Miao et al., 2014a,b ), it is straightforward to 

use fMLLR in DNN/HMM hybrid acoustic models. The GMM/HMM 

models which are usually trained to generate the alignment with 

context-dependent phone states for DNN training can further be 

used to estimate speaker transforms. This paper investigates the 

feature mapping approach for far-field microphones by examin- 

ing the individual and preferably combined impacts of beamform- 

ing and fMLLR for robust ASR. The comparison to multi-condition 

training is also presented. 

This paper is organized as follows. Section 2 discusses related 

work. Section 3 describes the DNN-based mapping approach. The 

experimental setup is described in Section 4 . The ASR results, em- 

ploying the BN feature mapping approach using far-field micro- 

phones, are presented in Section 5 . Section 6 discusses the results. 

Finally, the study is concluded in Section 7 . 

2. Related work 

2.1. Speech enhancement using DNN 

In a noisy and reverberant room, the reverberated speech x ( t ) is 

represented in time domain as the convolution of the clean speech 

signal s ( t ) and the room impulse response h ( t ), corrupted by addi- 

tive noise n ( t ), as 

x (t) = s (t) ∗ h (t) + n (t) . (1) 

The effect of early reflection and late reverberation on the rever- 

berant signal is considered as a separate process in many stud- 

ies. The late reverberation part of the room impulse response 

is often modeled as an exponentially damped Gaussian noise 

process and treated as additive noise. Hence, the observed re- 

verberant signal x ( t ) can be written by using the notation in 

Yoshioka et al. (2012) as 

x (t) = s (t) ∗ h e (t) + r(t) + n (t) , (2) 

where h e ( t ) is the early reflection part of the impulse response and 

r ( t ) is the late reverberation component of x ( t ). 

The conventional methods to recognize reverberated speech 

captured from distant microphones is to first reconstruct a clean 

version of the speech. This may be performed with a blind dere- 

verberation method, such as estimating the inverse filter solely on 

the observed signals capable to cancel out the reverberation ef- 

fects ( Miyoshi and Kaneda, 1988; Nakatani et al., 2005 ). Since the 

late reverberation is often treated as additive noise, speech en- 

hancement methods, such as spectral subtraction ( Boll, 1979 ) and 

minimum mean-square error (MMSE)-based techniques ( Ephraim 

and Malah, 1984; 1985 ), may be used to mitigate the impact 

of reverberation. If two or more microphones are used to cap- 

ture speech, multi-channel speech enhancement techniques such 

as multi-channel Wiener filter ( Meyer and Simmer, 1997 ), beam- 

forming followed by post-filtering ( McCowan and Bourlard, 2003 ), 

or blind speech separation ( Makino et al., 2007 ) can be used for 

improving the quality of speech. One drawback of these conven- 

tional speech enhancement methods is that they often fail to track 

the non-stationary noise signals in real-world scenarios. 

One of the emerging speech enhancement approaches is based 

on deep architectures. In Xu et al. (2015) , the DNN-based regres- 

sion model was trained using noisy data and their corresponding 
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