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a b s t r a c t

Efficient sensitivity analysis, particularly for the global sensitivity analysis (GSA) to identify the most
important or sensitive parameters, is crucial for understanding complex hydrological models, e.g.,
distributed hydrological models. In this paper, we propose an efficient integrated approach that inte-
grates a qualitative screening method (the Morris method) with a quantitative analysis method based on
the statistical emulator (variance-based method with the response surface method, named the
RSMSobol’ method) to reduce the computational burden of GSA for time-consuming models. Using the
Huaihe River Basin of China as a case study, the proposed approach is used to analyze the parameter
sensitivity of distributed time-variant gain model (DTVGM). First, the Morris screening method is used to
qualitatively identify the parameter sensitivity. Subsequently, the statistical emulator using the multi-
variate adaptive regression spline (MARS) method is chosen as an appropriate surrogate model to
quantify the sensitivity indices of the DTVGM. The results reveal that the soil moisture parameter WM is
the most sensitive of all the responses of interest. The parameters Kaw and g1 are relatively important for
the water balance coefficient (WB) and NasheSutcliffe coefficient (NS), while the routing parameter
RoughRss is very sensitive for the NasheSutcliffe coefficient (NS) and correlation coefficient (RC) response
of interest. The results also demonstrate that the proposed approach is much faster than the brute-force
approach and is an effective and efficient method due to its low CPU cost and adequate degree of
accuracy.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed hydrological models play a key role in studying
hydrology and water resources and are also particularly useful tools
for investigating many important issues in the planning, design,
operation and management of water resources (Muleta and
Nicklow, 2005). Parameter identification, model calibration and
uncertainty quantification are important steps in the modeling
process. These steps must be considered to ensure that the results
are credible and that valuable information is obtained
(Campolongo et al., 2007; Jakeman et al., 2006). Most hydrological
models are highly complex and are characterized by a set of

parameters that may not be exactly known or directly measurable.
Therefore, model parameter estimation must be performed by
calibration in most model applications, which can reduce the
parameter uncertainty in the simulation results (Cibin et al., 2010).
However, when the number of parameters is large, the calibration
processes may be computationally intensive, and the computa-
tional cost may become prohibitive. A lack of knowledge about
parameter sensitivities may result in time wasted on insensitive
parameters (Bahremand and De Smedt, 2008). Therefore, focusing
on sensitive parameters can reduce uncertainty and lead to a better
understanding of the model and more satisfactory simulation
(Lenhart et al., 2002). At present, sensitivity analysis (SA) is helpful
to identify the important and requisite factors or parameters and
rank parameters that have significant impact on specific model
outputs of interest (Saltelli et al., 2000; Tarantola and Saltelli, 2003;
Sieber and Uhlenbrook, 2005). In addition, SA provides useful
information regarding the behavior of the simulation model,
including the identification of relevant model inputs and the
information on model construction (Confalonieri, 2010). In general,
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sensitivity analysis is conducted for a variety of reasons. For
examples, to determine which input parameters contribute most to
output variability, additional research is required to increase
knowledge of parameter behavior to reduce output uncertainty, to
determine which groups of parameters interact with each other if
parameter interactions exist, to determine which parameters are
insensitive and can be held constant or eliminated from the final
model, and to identify the optimal regions within the parameter
space in subsequent calibration studies.

Uncertainty analysis (UA) generally refers to the determination
of the uncertainty that derives from uncertainty in model factors
(Helton et al., 2006), and SA refers to the determination of the
contributions of individual and different sources of uncertain
inputs to the uncertainty in the output of a model (Saltelli et al.,
2008). SA methods are generally classified as either local or
global SA (Saltelli et al., 2000; Muleta and Nicklow, 2005; van
Griensven et al., 2006). Local SA (LSA) methods compute or
approximate the local response of the model outputs by varying
input factors or parameters individually with other factors or
parameters at some nominal settings, known as the “baseline” or
“nominal value” point, in the hyperspace of the input factors
(Spruill et al., 2000; Holvoet et al., 2005; Cibin et al., 2010; Saltelli
and Annoni, 2010). By contrast, global sensitivity analysis (GSA)
evaluates the effects of input variations on the outputs in the entire
allowable ranges of the input space (Confalonieri et al., 2010; Tong,
2010). GSA has become widely used in hydrological applications in
recent years (Crosetto and Tarantola, 2001; van Griensven et al.,
2006; Cibin et al., 2010; Ren et al., 2010) because it accounts for
the effects of interactions between different parameters, particu-
larly the nonlinear relationship between parameters and state
variables (Saltelli et al., 2000; Makler-Pick et al., 2011). Saltelli et al.
(2000, 2004) defined GSAmethods by two properties (Tong, 2007b,
2010): the inclusion of influence of scales and shapes of the prob-
ability density functions for all inputs and the sensitivity estimates
of individual inputs that are evaluated while varying all other
inputs.

GSAs offer a comprehensive approach to model analysis because
they evaluate the effect of one factor while varying all other factors,
efficiently exploring the multidimensional input space
(Campolongo et al., 1999, 2011). A wide range of GSA methods are
available (Saltelli et al., 2000, 2005, 2006, 2008; Helton et al., 2006;
Campolongo et al., 2011) and range from qualitative screening
methods (Morris, 1991; Campolongo et al., 1999, 2007, 2011; Saltelli
et al., 2009) to quantitative techniques based on variance decom-
position (Cukier et al., 1978; Sobol’, 1993, 2001; Homma and Saltelli,
1996; Saltelli et al., 1999, 2010; Oakley and O’Hagan, 2004; Xu and
Gertner, 2011). The Fourier amplitude sensitivity test (FAST) (Cukier
et al., 1978) and Sobol’methods (Sobol’, 1993) are the most popular
and widely investigated variance decomposition-based methods
(Homma and Saltelli, 1996; Saltelli and Bolado, 1998; Ratto et al.,
2001; Francos et al., 2003; Cariboni et al., 2007; Cibin et al.,
2010). However, the FAST method does not efficiently address
higher-order interaction terms (Saltelli and Bolado, 1998; Cibin
et al., 2010). By contrast, the Sobol’ method can estimate the
interactions between the parameters and the total sensitivity index
of individual parameters (Sobol’, 1993, 2001). Although the Sobol’
method has been applied inmany fields of science and engineering,
its application in hydrology has been very limited (Pappenberger
et al., 2006, 2008; Tang et al., 2007a,b; Cloke et al., 2008; Cibin
et al., 2010). A shortcoming of GSA methods is their high compu-
tational demands (Hamby, 1994; Moore and Ray, 1999; Ascough
et al., 2005; Makler-Pick et al., 2011). Therefore, in this paper, we
use a response surface model (RSM) to construct a statistical
simulator for the distributed hydrological model. Furthermore, an

uncertainty quantification toolkit called PSUADE (Problem Solving
environment for Uncertainty Analysis and Design Exploration, see
the Appendix) is used to generate the emulators to quantify the
parameter sensitivities.

The remainder of this paper is organized as follows: Section 2
contains a brief description of sensitivity analysis methods, such
as the Morris screening method, response surface method and
RSMSobol’ method and describes the fundamentals of the distrib-
uted time-variant gain model (DTVGM). A case study of the Huaihe
River Basin with the available data, model parameters and evalu-
ated criteria are described in Section 3. Subsequently, Section 4
illustrates and discusses the sensitivity of the DTVGM parameters
based on the statistical emulator. Some conclusions of the study are
discussed in Section 5.

2. Material and methods

2.1. Integrated approach for efficient sensitivity analysis

An efficient integrated approach is proposed to analyze the sensitivity of
hydrological model parameters in four steps: 1) constructing a complete description
of the input parameters, 2) performing a down-select screening analysis on all
uncertainty parameters, 3) constructing an approximate model using the response
surfaces (also known as surrogate functions and emulators) for a complex hydro-
logical model, and 4) performing quantitative sensitivity analysis via variance
decomposition techniques. The details are as follows:

2.1.1. Morris screening method
The Morris method (also called elementary effect method) has been proposed as

a screening method to identify a subset of inputs that have the greatest influence on
the outputs (Morris, 1991). It is a simple but effective way of screening a few
important input factors among the many that can be contained in a model (Saltelli
et al., 2008), which is based on replicated and randomized “one-at-a-time” (OAT)
design, and the detail introduction of the OAT design can see the work of Morris
(1991).

An elementary effect is defined as follows. Consider a model with n independent
inputs Xi, i¼ 1, 2,., n, which varies in the n-dimensional unit cube across p selected
levels (Saltelli et al., 2008). For a given value of X, the elementary effect of the ith
input factor is defined as

diðXÞ ¼ f ðX1;.;Xi�1;Xi þ D;Xiþ1;.;XnÞ � f ðX1;.;Xi�1;Xi;.;XnÞ
D

(1)

whereD is a value in {1/(p� 1), 2/(p� 1),., 1�1/(p� 1)}, p is the number of levels,
and X ¼ (x1,., xi�1, xi,., xn) is a random sample in the parameter space so that the
transformed point (x1, ., xi�1, xi þ D, ., xn) is still within the parameter space.

Morris proposed two sensitivity measures to analyze the data: m which esti-
mates the overall effect of each input on the output, and s which estimates the
higher order effects such as nonlinearity and interactions between inputs (Tong and
Graziani, 2008). To estimate these measures, Morris (1991) suggests sampling R
elementary effects for each input by randomly sampling R point X(1), X(2), ., X(R) to
ensure that there are enough regions in the design space. Campolongo et al. (2007)
proposed an improved measure, m* in place of m, with the following formulas:

m*i ¼ 1
R

XR
j¼1
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�
XðjÞ

���� (2)

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R� 1

XR
j¼1

2
4di

�
XðjÞ

�
� 1
R

XR
j¼1

di
�
XðjÞ

�35
2

vuuut (3)

If mi* is substantially different from zero, then input i has an important “overall”
influence on the output. A large si implies that input i has a nonlinear effect on the
output or that there are interactions between input i and the other inputs (Tong,
2008).

2.1.2. Response surface analysis
A response surface model (RSM), also known as a meta-model or surrogate

model, is a collection of statistical and mathematical techniques that are useful for
developing, improving, and optimizing processes (Meyers and Montgomery, 2002).
The choice of RSM for a given computational model depends on the knowledge of
the computational model itself. The software PSUADE provides a number of
response surface methods, ranging from parametric regression methods to non-
parametric methods such as Friedman’s multivariate adaptive regression splines
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