
Joint speaker and environment adaptation using TensorVoice for
robust speech recognition

Yongwon Jeong ⇑

School of Electrical Engineering, Pusan National University, Busan 609-735, Republic of Korea

Received 12 October 2012; received in revised form 5 October 2013; accepted 14 October 2013
Available online 25 October 2013

Abstract

We present an adaptation of a hidden Markov model (HMM)-based automatic speech recognition system to the target speaker and
noise environment. Given HMMs built from various speakers and noise conditions, we build tensorvoices that capture the interaction
between the speaker and noise by using a tensor decomposition. We express the updated model for the target speaker and noise envi-
ronment as a product of the tensorvoices and two weight vectors, one each for the speaker and noise. An iterative algorithm is presented
to determine the weight vectors in the maximum likelihood (ML) framework. With the use of separate weight vectors, the tensorvoice
approach can adapt to the target speaker and noise environment differentially, whereas the eigenvoice approach, which is based on a
matrix decomposition technique, cannot differentially adapt to those two factors. In supervised adaptation tests using the AURORA4
corpus, the relative improvement of performance obtained by the tensorvoice method over the eigenvoice method is approximately 10%
on average for adaptation data of 6–24 s in length, and the relative improvement of performance obtained by the tensorvoice method
over the maximum likelihood linear regression (MLLR) method is approximately 5.4% on average for adaptation data of 6–18 s in
length. Therefore, the tensorvoice approach is an efficient method for speaker and noise adaptation.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In hidden Markov model (HMM)-based automatic
speech recognition (ASR) (Rabiner, 1989; O’Shaughnessy,
2008), speaker and environment variabilities are two major
factors that affect the performance of ASR systems in real-
world applications. Various techniques have been investi-
gated to compensate for these two factors.

Linear models have been successfully used in the adap-
tation of acoustic models, e.g., eigenvoice adaptation
(Kuhn et al., 2000). In the eigenvoice approach, basis vec-
tors are constructed from the supervectors of training
speakers by principal component analysis (PCA) (Jolliffe,
2002). A supervector for each training speaker is built by

concatenating all the mean parameters of Gaussian mix-
ture components. During adaptation, the model for the tar-
get speaker is assumed to be a linear combination of basis
vectors and the weight vector is estimated in the maximum
likelihood (ML) framework. Due to its low-dimensional
speaker space, the eigenvoice method is suitable for rapid
speaker adaptation. The eigenvoice approach can also be
applied to speaker and environment adaptation by con-
structing a speaker and environment space using training
models built from many speakers and various noise condi-
tions, as described below. The eigenvoice approach is the
application of Eigenfaces (Sirovich and Kirby, 1987; Turk
and Pentland, 1991) to the adaptation of acoustic models,
although the eigenvectors termed the eigenvoices obtained
by the eigenvoice approach do not represent a voice signal.

Our approach is based on a tensor decomposition (or a
multilinear decomposition) (Kolda and Bader, 2009) for
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speaker and noise adaptation. We briefly review works on
speaker and noise adaptation techniques in HMM-based
speech recognition, and applications of tensor
decompositions.

For robust speech recognition, speaker and environment
variabilities can be compensated by using either different
techniques or the same technique for both. First, speaker
and environment variabilities can be separately compen-
sated by combining a speaker adaptation technique and a
noise compensation technique. In Nguyen et al. (1999),
environment adaptation is performed in a speaker-indepen-
dent (SI) manner using maximum likelihood linear regres-
sion (MLLR) adaptation (Leggetter and Woodland, 1995),
thus compensating for the environmental effect, and
speaker adaptation is performed in the eigenvoice frame-
work. In Rigazio et al. (2001), the difference of mean vec-
tors between training and target noise conditions is
compensated by a Jacobian approach using a first-order
approximation (Gales, 1998a; Sagayama et al., 1997), and
the differences between the training and target speakers
are compensated by the MLLR + maximum a posteriori

(MAP) method (Gauvain and Lee, 1994). In Wang and
Gales (2012), the training and target speaker differences
are compensated by transforming HMM mean parameters
by MLLR adaptation, and background noise is compen-
sated by a model-based vector Taylor series (VTS) trans-
form (Acero et al., 2000; Li et al., 2007); the transforms
for the two factors are estimated using different adaptation
data.

Second, speaker and environment variabilities can be
compensated using the same adaptation technique. In Selt-
zer and Acero (2011a), a series of constrained MLLR
(CMLLR) transforms (Gales, 1998b) are estimated to
transform a speaker-adapted model in one environment
to a different environment. In the training phase, separate
transforms for speaker and environment are obtained by
speaker-adaptive training (SAT) (Anastasakos et al.,
1996). In SAT, a transformation-based adaptation tech-
nique such as the MLLR method is applied during both
training and adaptation such that inter- and intra-speaker
variations are decoupled and the model for intra-speaker
variation is transformed to the target speaker. However,
this approach needs knowledge about the training and test-
ing conditions. This problem is addressed by using an
unsupervised environment clustering technique described
in Seltzer and Acero (2011b). Environment clustering is
performed by building a Gaussian mixture model
(GMM) using the silence portion of training utterances,
and the silence portion from utterances of a test environ-
ment is used to decide the cluster that the test environment
belongs to. In ensemble speaker and speaking environment
modeling (ESSEM) (Tsao and Lee, 2009), a joint speaker
and noise adaptation approach is proposed using the eigen-
voice approach. In ESSEM, HMMs are constructed for
different speakers, noise types, and channel distortions. A
supervector for each training condition is built in the same
way as in the eigenvoice approach. Supervectors built in

different training conditions form an ensemble speaker
and speaking environment space. The supervector for a
new testing environment is estimated by a stochastic
matching criterion via either the environment clustering
algorithm (where supervectors are clustered into groups)
or the environment partitioning algorithm (where each
supervector is partitioned into smaller vectors). ESSEM
is closely related to the eigenvoice technique and cluster
adaptive training (CAT) based speaker adaptation (Gales,
2000) in that supervectors of the training condition play the
role of basis vectors. In CAT, cluster means, which play the
role of basis vectors, are derived from the cluster analysis
of training models, and the model for the target speaker
is expressed as a linear interpolation of all the cluster
means. The interpolation weight vector (which is equiva-
lent to a weight vector in the eigenvoice technique) is esti-
mated in the ML framework.

Tensor decompositions (Kolda and Bader, 2009) have
been successfully used in image and computer vision appli-
cations. Tensor decompositions are higher-order general-
izations of matrix decompositions such as PCA and
singular value decomposition (SVD). Extending the eigen-
face method, Vasilescu and Terzopoulos (2002a) uses a ten-
sor decomposition to model an ensemble of face images of
various expressions, viewpoints, and illumination condi-
tions using tensor analysis, introducing the TensorFaces.
The tensorface approach is applied to facial recognition
under varying expression, viewpoint, and illumination in
Vasilescu and Terzopoulos (2002b). In Vlasic et al.
(2005), the authors apply a tensor decomposition to face
animation. Using the tensor decomposition of 3D scans
of faces from many people and expressions, the authors
build a model that can control the identity, expression,
and viseme (the visual equivalent of phoneme). As a gener-
alization of SVD to tensor objects, multilinear SVD is
introduced in Lathauwer et al. (2000). Multilinear PCA
(MPCA), the tensor equivalent of PCA, is applied to gait
recognition in Lu et al. (2008). Vasilescu and Terzopoulos
(2005) introduces a generalization of independent compo-
nent analysis (ICA) to tensor objects called multilinear
ICA (MICA), which provides better performance than
the tensorface approach in facial recognition under varying
viewpoint and illumination.

In this paper, we present a tensor decomposition based
approach to adapt acoustic models jointly to the target
speaker and noise environment. From the decomposition
of a fourth-order tensor (4-D array) consisting of acoustic
models trained from many speakers and various noise con-
ditions, we obtain an extended core tensor, which we call
the TensorVoices, that is common across training speakers
and noise conditions. In Jeong (2010), a tensor decomposi-
tion is applied to the clean acoustic models of training
speakers where the HMM mean parameters of training
speakers are collectively represented in a third-order ten-
sor. In Jeong (2011), the approach is extended to a
fourth-order tensor in which an additional dimension is
added for a noise space. However, in their approach,
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