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Abstract

In this paper, we focus on inter-arrival time autocorrelation and its impact on model performance. We present a technique to generate

matrix exponential random variables that match first-order statistics (moments) and second-order statistics (autocorrelation) from an

empirical distribution. We briefly explain the matrix exponential distribution and show that we can represent any empirical distribution

arbitrarily closely as matrix exponential. We then show how we can incorporate an autocorrelation structure into our matrix exponential

random variables using the autoregressive to anything technique. We present examples showing how we match first and second-order

statistics from empirical distributions and finally we show that our autocorrelation matrix exponential random variables produce more

accurate performance metrics from simulation models than traditional techniques.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There is an ever growing literature on the generation of

IID random numbers. See for example, the latest edition of

Knuth, vol. II [1] or on-line see http://random.mat.sbg.ac.at/

links/. For correlated random variables, the literature is

much smaller, with most of the results being for pairwise

correlation, or autocorrelation for a specific family of

distributions. There are only a few attempts to generate

autocorrelated random numbers with any marginal distri-

bution. Polge’s method [2] generated first a list of i.i.d.

random variates, which is then sorted in such a way as to

induce the desired correlation. This makes the method

expensive in both time and space if large numbers of RV’s

are to be generated. In 1979, Badel [3] developed a method

for the extended exponential family, based on a first-order

autoregressive scheme with an additive Bernoulli residual.

Metzner [4] generated autocorrelated numbers where the

desired marginal is approximated with a four-moment

matched distribution (even for the ‘simple’ distributions)

and the allowed correlations are restricted. More recently,

Willemain and Desautels [5] presented the ‘Sum of

Uniforms’ method to generate correlated uniform random

variables. This is a simple and elegant method, but limited

to serial correlation AR(1) only. Myers and Yeh [6] present a

simple case of generating discrete RV’s from a specified

autocorrelation structure. Parkinson [7] discusses gener-

ating RV’s from curves derived from second-order linear

segments of an autocorrelation structure. Melamed et al.

[8–12] developed the TES-family of correlated random

numbers in a series of papers, but the process is rather

counter intuitive and the software package TEStool is

reportedly no longer available. More recently, Cario and

Nelson [13–15] presented the ARTA method (Auto-

Regressive-To-Anything). This method uses an underlying

AR(p) Gaussian autoregressive base process which is

transformed into the desired marginals. See also [16, pp.

66–71]. It is of critical importance here to choose correctly

the autocorrelation of the base process, such that the

transformed process has the desired autocorrelation. We use

this method, which we pair with the generation of ME

random variables.

Generating RV’s from known distributions, e.g. Poisson,

exponential, Weibull, is well understood and well docu-

mented [17, Chapt. 8]. Suppose, however, that RV’s are
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desired from an empirical distribution, i.e. a sample whose

cumulative distribution function (CDF) F(x) is unknown.

The simulation engineer has three broad choices. Find the

parameters within a familiar distribution such that the CDF

of the familiar distribution ‘fits’ the target distribution and

then generate RV’s from this target distribution [17, p. 329]

or one may generate RV’s from a frequency table

representing the CDF [17, p. 494] of the empirical

distribution or bootstrapping techniques can be used to

generate RV’s [18–20].

Fitting empirical data to a family of known distributions

such as the exponential often misrepresents important parts

of the empirical distribution—particularly the head and tail

regions. Generating RV’s from a table representing the

empirical distribution function often results in modeling

error due to the inability of the table to accurately reflect

the shape of the distribution in the tail or other low-

probability region and bootstrapping also may be

unsuitable for estimating the empirical distribution in the

tail distribution [21].

Brown et al. [22,23] demonstrated that RV’s can be

generated when the CDF F(x) is known both analytically

and empirically. Brown’s techniques use a matrix expo-

nential representation of the target distribution and then

generate matrix exponential random variables and produce

RV’s that are based on first-order statistics (moments) of the

target distribution. There are cases, however, where RV’s

based on first-order statistics are not powerful enough.

Teletraffic models are a good example.

Buffering requirements at a network node or switch in an

ATM network is an important aspect of telecommunication

network design. It has been shown that models that assume a

renewal (uncorrelated) arrival stream, i.e. uncorrelated

inter-arrival times, result in operational network buffer

designs which frequently exhibit much lower cell loss than

actual traffic conditions [24–26]. Analysis of network traffic

shows that packet/cell inter-arrival times are often highly

autocorrelated.

In 1989 and 1990, Leland and Wilson [27] collected

traces of several hundred million Ethernet packets from

Bellcore’s Morristown Research and Training Center. These

packet traces formed the basis of the conclusion in several

papers [28–32] that renewal models of network traffic may

poorly reflect the behavior of communication networks. The

behavior observed by Leland et al. was earlier characterized

by Mandelbrot [33] as self-similar.

In their landmark work, Leland et al. [28,29] show that

the Ethernet network traffic was self-similar across widely

varying time scales. Traffic bursts had no natural length and

at every time scale, periods of activity are clearly

distinguishable from idle times. The principal characteristic

of self-similar distributions and the basis for the character-

ization of these distributions as self-similar is long-range

dependency. Cell inter-arrival times have been found to be

autocorrelated at lags of 5000 cells. This long-term

dependency is why traditional Poisson and other renewal

streams are not viable models of these systems. Short and

long-term dependencies have also been observed in TCP

applications over wide-area networks [34,25] and VBR

video traffic has been shown to have strong correlations

[35]. These correlations cause buffer overow which is not

predicted in models based on renewal input streams.

Fig. 1 shows the packet inter-arrival time autocorrelation

in one of the Bellcore Ethernet traces.1 Packet inter-arrival

time autocorrelation is plotted to lag-1000. The inter-arrival

time autocorrelation for an exponential random variable

with the same mean as the Bellcore trace is also plotted to

lag-1000 to allow comparison.

Note the slow decay in packet inter-arrival time

autocorrelation for the Bellcore trace as the lag increases

while the exponential inter-arrival times have essentially no

autocorrelation at any lag-p. Clearly, a simulation model

with a Poisson arrival stream will not be an effective

surrogate for a system with autocorrelated arrivals such as

those found in the Bellcore Ethernet packet trace even if the

Poisson stream matches first-order statistics of the Bellcore

trace.

In this paper, we present a technique that will allow the

simulation engineer to generate correlated RV’s, that not

only match first-order statistics from the target CDF

arbitrarily closely, but also match second-order statistics

from the target CDF arbitrarily closely. This technique

captures both the first and second-order behavior through

mathematical formulations which are then used to generate

the RV stream. Thus, the simulation engineer can generate

autocorrelated RV’s that match any distribution arbitrarily

closely.

Our technique creates a matrix exponential (ME)

representation of the target CDF that matches first-order

statistics arbitrarily closely then we overlay our ME RV’s

with any correlation structure. As Brown [22,23] has shown,

this is not a ‘distribution fitting’ technique because we

–0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300 400 500 600 700 800 900 1000

A
ut

o-
C

or
re

la
tio

n

Bellcore Trace
Renewal Distribution

Lag p

Fig. 1. Inter-arrival time autocorrelation comparison.

1 August 1990 Ethernet trace.
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