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Statistical models for spatio-temporal data are increasingly used in environmetrics, climate change,
epidemiology, remote sensing and dynamical risk mapping. Due to the complexity of the relationships
among the involved variables and dimensionality of the parameter set to be estimated, techniques for
model definition and estimation which can be worked out stepwise are welcome. In this context, hier-
archical models are a suitable solution since they make it possible to define the joint dynamics and the
full likelihood starting from simpler conditional submodels. Moreover, for a large class of hierarchical
models, the maximum likelihood estimation procedure can be simplified using the Expectation-Maxi-
mization (EM) algorithm.
In this paper, we define the EM algorithm for a rather general three-stage spatio-temporal hierarchical
model, which includes also spatio-temporal covariates. In particular, we show that most of the param-
eters are updated using closed forms and this guarantees stability of the algorithm unlike the classical
optimization techniques of the Newton-Raphson type for maximizing the full likelihood function.
Moreover, we illustrate how the EM algorithm can be combined with a spatio-temporal parametric
bootstrap for evaluating the parameter accuracy through standard errors and non-Gaussian confidence
intervals.
To do this a new software library in form of a standard r package has been developed. Moreover, realistic
simulations on a distributed computing environment allow us to discuss the algorithm properties and
performance also in terms of convergence iterations and computing times.

© 2009 Elsevier Ltd. All rights reserved.

Software availability

Name: r package Stem

Developer: Michela Cameletti
E-mail: michela.cameletti@unibg.it

Software required: R

Availability: downloadable from: http://cran.r-project.org/web/
packages/Stem/index.html

1. Introduction

a straightforward and flexible way. For this reason they are
receiving more and more attention from both the Bayesian and
frequentist point of view (see, for example, Wikle et al. (1998),
Wikle (2003) and Clark and Gelfand (2006)), the latter being the
approach adopted in this paper.

A hierarchical model can be constructed by putting together
conditional submodels which are defined hierarchically at different
levels. At the first level the observation variability is modelled by
the so-called measurement equation, which is essentially given by
a signal plus an error. In the classical approach the true signal or
trend is a deterministic function; here, for the sake of flexibility, the

Statistical modelling of spatio-temporal data has to take into
account various sources of variability and correlation arising from
time at various frequencies, from space at various scales, their
interaction and other covariates which may be purely spatial
quantities or pure time-series without a spatial dimension, or
even dynamical fields on space and time. Hierarchical models for
spatio-temporal process can cope with this complexity in
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trend is a stochastic process which is defined at the subsequent
levels of the hierarchy, where the inherent complex dynamics is
split into sub-dynamics which, in turn, are modelled hierarchically.

In addition to flexibility, a second advantage of this approach is
that we can apportion the total uncertainty to the various
components or levels. Moreover, from the likelihood point of view,
this corresponds to taking a conditional viewpoint for which the
joint probability distribution of a spatio-temporal process can be
expressed as the product of some simpler conditional distributions
defined at each hierarchical stage.
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When the spatio-temporal covariance function satisfies the so-
called separability property, these models can be easily represented
in state-space form. Hence Kalman filtering and smoothing tech-
niques can be used for reconstructing the temporal component of
the unobserved trend (Wikle and Cressie, 1999). For example in
environmental statistics, Brown et al. (2001) consider the calibra-
tion of radar rainfall data by means of a ground-truth monitoring
network and Fasso et al. (2007b) study airborne particulate matter
and the calibration of a heterogeneous monitoring network.

Moreover, a separable hierarchical model easily provides
a spatial estimator of the Kriging type (Cressie, 1993, Chapter 3) so
that a spatio-temporal process, together with its uncertainty, can be
mapped in time. For example, Stroud et al. (2001), Sahu et al.
(2007), Fasso et al. (2007a), Fasso and Cameletti (in press) propose
mapping methods for spatio-temporal data, such as rainfall,
tropospheric ozone or airborne particulate matters, which are
continuous in space and measured by a monitoring network
irregularly distributed in the considered areas.

The Expectation-Maximization (EM) algorithm has been
originally proposed for maximum likelihood estimation in pres-
ence of structural missing data, see e.g. McLachlan and Krishnan
(1997). In spatio-temporal modelling, the EM has been recently
used by Xu and Wikle (2007) for estimating certain parameteri-
zations and by Amisigo and Van De Giesen (2005) for the
concurrent estimation of model parameters and missing data in
river runoff series.

In this paper we propose EM estimation and bootstrap uncer-
tainty assessment for a separable hierarchical spatio-temporal
model which generalizes Xu and Wikle (2007) and Amisigo and
Van De Giesen (2005) as it covers the case of spatio-temporal
covariates. This model class is used for air quality applications in
Fasso et al. (2007a) and Fasso and Cameletti (in press), which
consider also dynamical mapping and introduce some sensitivity
analysis techniques for assessing the mapping performance and
understanding the model components. In this framework, using the
state-space representation, it is easily seen that temporal predic-
tion is an immediate consequence of Kalman filtering for this
model, see e.g. Durbin and Koopman (2001).

The rest of the paper is organized as follows. In Section 2, the
above separable spatio-temporal model with covariates is formally
introduced.

In Section 3, the EM algorithm is discussed extensively. In
particular, we show that the maximization step is based on closed-
form formulas for all the parameters except for the spatial covari-
ance ones, which are obtained by the Newton-Raphson (NR)
algorithm. Hence, we avoid the inversion of the large Hessian
matrix which would arise in performing numerical maximization
of the full likelihood.

In Section 4, the spatio-temporal parametric bootstrap is
introduced for computing standard errors of the parameter esti-
mates and their confidence intervals. This method turns out to be
particularly useful for assessing estimate accuracy, especially in our
case which is characterized by asymmetric estimate distributions.

Section 5 is devoted to a simulation study that discusses the
performances of the EM algorithm in terms of estimate precision
and computing time. This is done using realistic data which are
generated on the basis of the airborne particulate matter data set
discussed by Cameletti (2007) , Fasso et al. (2007a) and Fasso and
Cameletti (in press). In particular, Section 5.1 focuses on the
implementation issues with special reference to r software and
the distributed computing environment while the discussion of the
results is provided in Sections 5.2 and 5.3.

The conclusions are drawn in Section 6, while the paper ends
with Appendixes A and B which contain computational details
regarding EM and NR algorithm.

2. The spatio-temporal model

Let Z(s,t) be the observed scalar spatio-temporal process at time
t and geographical location s. Let Z;={Z(s1,t),....Z(sn,t)}' be the
network data at time ¢ and at n geographical locations sy, ..., Sp.
Moreover let Y; = {Y1(t),...,Yp(t)} be a p-dimensional vector for the
unobserved temporal process at time t with p < n. The three-stage
hierarchical model is defined by the following equations for t=1,
T

Zt = Ur +¢¢ (l)
Us = X + KYe + o (2)
Yi = GYr1+n¢ (3)

In equation (1) the measurement error ¢ is introduced so that
U; can be seen as a smoothed version of the spatio-temporal
process Z;. In the second stage the unobserved spatio-temporal
process U; is defined as the sum of three components: a function of
the (n x d)-dimensional matrix X; of d covariates observed at time t
at the n locations, the latent space-constant temporal process Y;
and the model error w: It should be noted that the (n x p)-
dimensional matrix K is known and accounts for the weights of the
p components of Y; for each spatial location s;, i=1, ..., n. A
common choice for K is given by the loadings of a principal
component decomposition (see Fasso et al. (2007b) and Wikle and
Cressie (1999)). Then in equation (3), the temporal dynamics of Y;
is modelled as a p-dimensional autoregressive process where G is
the transition matrix and 7, is the innovation error.

The three error components, namely ¢, ¢ and «y, are zero mean
and independent over time as well as mutually independent. In
particular, the pure measurement error ¢; is a Gaussian white noise
process with variance and covariance matrix given by a?ln, where I,
is a n-dimensional identity matrix. The measurement instrument
precision o2 is supposed constant over space and time as it is the
case of a homogeneous network. The case of different instruments
belonging to a heterogeneous network is discussed in Fasso et al.
(2007b). The innovation 7; of equation (3) is a p-dimensional
Gaussian white noise process with variance-covariance matrix X.
Finally, the pure spatial component w; of equation (2) is a n-
dimensional Gaussian spatial process. It is uncorrelated with ¢; and
7t for each t and its variance-covariance matrix is given by a time-
constant spatial covariance function

Covfw(s. 1), (s, )] = o2Cy(h)

where h=||s — ¢|| is the Euclidean distance between sites s and s'.
As the covariance function depends only on h, the spatial process is
second-order stationary and isotropic. Moreover, the function Cy(h)
depends on the parameter # to be estimated and is continuous at
h =0 with limp_oCs(h) = 1. A simple example of covariance func-
tion is the exponential which is given by

Cy(h) = exp(—bh) (4)

Other covariance functions defining isotropic second-order
stationary spatial processes are discussed, for example, in Banerjee
et al. (2004, Chapter 1).

Substitution of equation (2) into equation (1) yields the
following two-stage hierarchical model

1 Here and in the sequel, braces are used for column stacking the vectors
involved. Brackets will be used for row stacking instead.
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