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Abstract

In a traditional model of speech recognition, acoustic and linguistic information sources are assumed independent of each other.
Parameters of hidden Markov model (HMM) and n-gram are separately estimated for maximum a posteriori classification. However,
the speech features and lexical words are inherently correlated in natural language. Lacking combination of these models leads to some
inefficiencies. This paper reports on the joint acoustic and linguistic modeling for speech recognition by using the acoustic evidence in
estimation of the linguistic model parameters, and vice versa, according to the maximum entropy (ME) principle. The discriminative
ME (DME) models are exploited by using features from competing sentences. Moreover, a mutual ME (MME) model is built for sen-

tence posterior probability, which is maximized to estimate the model parameters by characterizing the dependence between acoustic and
linguistic features. The N-best Viterbi approximation is presented in implementing DME and MME models. Additionally, the new mod-
els are incorporated with the high-order feature statistics and word regularities. In the experiments, the proposed methods increase the
sentence posterior probability or model separation. Recognition errors are significantly reduced in comparison with separate HMM and
n-gram model estimations from 32.2% to 27.4% using the MATBN corpus and from 5.4% to 4.8% using the WSJ corpus (5K condition).
� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Speech recognition focuses on searching for the most
likely word sequence bW from test speech X. The maximum
a posteriori (MAP) decoding is performed by finding

bW ¼ arg max
W

pðW jX Þ ¼ arg max
W

pKðX jW ÞpCðW Þ ð1Þ

where pK(XjW) denotes the acoustic likelihood given the
hidden Markov model (HMM) K and pC(W) is the prior
word probability given the n-gram model C. Statistical
models K and C play an important role in speech recogni-
tion. Maximum likelihood (ML) is a popular criterion for
parameter estimation. However, higher likelihood does
not guarantee better classification. Minimum classification

error (MCE) and maximum mutual information (MMI)
criteria were presented for discriminative training of
HMMs (Bahl et al., 1986; Juang and Katagiri, 1992; Nor-
mandin et al., 1994) and n-grams (Kuo et al., 2002).

The maximum entropy (ME) method (Jaynes, 1957;
Della Pietra et al., 1997) is attractive for establishing model
distribution with maximum randomness subject to certain
constrains. ME estimation was exploited for language
modeling (Berger et al., 1996; Rosenfeld, 1996), and
extended for direct acoustic modeling (Kuo and Gao,
2004). The merit of ME modeling is the capabilities of
merging non-independent, asynchronous and overlapping
features into a joint probability model. The information
sources of trigger pairs, association patterns and semantic
topics were incorporated in language models (Rosenfeld,
1996; Khudanpur and Wu, 2000; Chien, 2006). Kuo and
Gao (2004) combined the asynchronous sequences of
speech observations and HMM states into acoustic model,
which corresponded to the maximum entropy Markov
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model (MEMM) (McCallum et al., 2000). The conditional
random field (CRF) (Lafferty et al., 2001) has been pro-
posed to perform global normalization rather then the
local normalization in an MEMM. The model parameters
were estimated by maximizing the conditional likelihood.
Liu et al. (2006) investigated the properties of HMM,
MEMM and CRF for sentence boundary detection. Sha
and Pereira (2003) applied CRF for shallow parsing where
different training methods were evaluated by the metric of
labeling accuracy. CRF was also explored for phone recog-
nition by adopting various phonetic attributes rather than
traditional ceptral features as the input features (Morris
and Fosler-Lussier, 2006). Due to the discriminatively
trained attributes, the phone recognition accuracy was
improved.

Previous studies assumed acoustic and linguistic models
(K,C) were independent, and estimated them individually
by different criteria. A scaling factor was required to bal-
ance the acoustic and linguistic scores, and seen as an
important parameter in a large vocabulary continuous
speech recognition (LVCSR) system although some other
decoding parameters e.g. beam width, insertion penalty,
etc., are also tunable for LVCSR. Two weaknesses are
incurred. First, considering the hierarchical matching from
phonetic level to lexical level, the assumption of model
independence is unrealistic for obtaining the global opti-
mum of concerned criteria. Second, the scaling factor is
sensitive to the changing environments and domains. A
development set should be prepared to tune the scaling fac-
tor. In (Beyerlein, 1998), a discriminative combination of
acoustic model and language model was presented by
adapting the scaling factor rather than the models them-
selves according to different discriminative criteria.

Recently, Gunawardana et al. (2005) presented the hid-
den CRF (HCRF) for phone classification, where the
HMM parameters and phone unigrams were combined in
a log linear model for joint optimization. Model depen-
dency between acoustic and linguistic features was first
investigated. Nonetheless, HCRF was not feasible for
LVCSR because the marginalization over state sequences
was intractable beyond phone classification. Although the
ME and CRF algorithms were derived from different
objective functions, they complied with the same log linear
model in parameter estimation. Additionally, Quattoni et
al. (2007) developed a discriminative hidden-state CRF
model for visual recognition tasks. This model was equiva-
lent to the HCRF model and outperformed the HMM and
CRF models for gesture recognition. The advantage of
joint discriminative learning of latent variables and obser-
vations was demonstrated.

In this study, we recast HCRF from the viewpoint of
ME principle, and incorporate the higher-order acoustic
and linguistic features in calculation of sentence posterior
probability for LVCSR. The evolution of ME models is
presented. First, the acoustic features from competing
word candidates are adopted to estimate the discriminative
ME (DME) language model (Chueh et al., 2005). Acoustic

discrimination information is embedded in linguistic
parameters. The relationship of DME model to the other
models is illustrated. Moreover, a mutual ME (MME)
model is built by combining different sources of acoustic
and linguistic features (Chueh and Chien, 2006). This mod-
ularized framework is initialized from the individual HMM
and n-gram models, and generalized to characterize high-
order acoustic and language regularities. In particular,
HMM and n-gram parameters are merged for joint optimi-
zation. The LM scaling factor is not required in decoding
algorithm. The discriminative training is performed by
using the N-best paradigm for word recognition. This work
investigates how different features affect objective function
and speech recognition accuracy by performing experi-
ments on broadcast news data.

2. Maximum entropy modeling

An ME method focuses on completely modeling what is
known, and carefully avoiding assuming anything that is
not known (Jaynes, 1957; Berger et al., 1996). All informa-
tion sources serve as constraints to be imposed to infer the
model with the highest entropy. This approach is more
elaborate than information combination by linear interpo-
lation, since the ME model optimally combines the infor-
mation sources in a consistent fashion. The ME acoustic
model has been developed by directly modeling the
HMM states and observation Gaussian identities (Kuo
and Gao, 2004). HCRF model has been examined to char-
acterize phone labels, the HMM states and Gaussian statis-
tics (Gunawardana et al., 2005; Lafferty et al., 2001). This
study explores the joint acoustic and linguistic modeling
based on ME principle and investigates the equivalence
to the HCRF model.

2.1. ME principle

Given a probability model p(y) for random variable y,
ME method restricts the model to be consistent with all
information sources, and simultaneously makes the model
distribution as uniform as possible. Let f1(y), . . . , fF(y)
denote the feature functions defined by

fiðyÞ ¼
1; if y matches feature i

0; otherwise

�
ð2Þ

Since the true model p(y) encapsulates these features, the
expected feature functions using true distribution p(y)
and empirical distribution ~pðyÞ should satisfy the equality

Ep½fi� ¼ E~p½fi�; for i ¼ 1; . . . ; F ð3Þ

where the true expectation is given by Ep½fi� ¼
P

ypðyÞfiðyÞ,
and the empirical expectation is calculated from training
samples {yt, t = 1, . . . ,T} by E~p½fi� ¼ ð1=T Þ

PT
t¼1fiðytÞ. The

ME model is calculated by maximizing the entropy gener-
ated by p(y) such that the constraints in (3) are satisfied.
The extended objective function is formed by
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