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a b s t r a c t

A recurrent problem in applications that build on environmental sensor networks is that of sensor data
organization and interpretation. Organization focuses on, for instance, resolving the syntactic and se-
mantic heterogeneity of sensor data. The distinguishing factor between organization and interpretation
is the abstraction from sensor data with information acquired from sensor data. Such information may be
situational knowledge for environmental phenomena. We discuss a generic software framework for the
organization and interpretation of sensor data and demonstrate its application to data of a large scale
sensor network for the monitoring of atmospheric phenomena. The results show that software support
for the organization and interpretation of sensor data is valuable to scientists in scientific computing
workflows. Explicitly represented situational knowledge is also useful to client software systems as it can
be queried, integrated, reasoned, visualized, or annotated.

� 2014 Elsevier Ltd. All rights reserved.

Software availability

Wavellite is open source, is written in Java, and was released in
2013 under the Eclipse Public License (EPL 1.0). Wavellite was
developed and is maintained by Markus Stocker. The Wavellite
project page is at http://www.uef.fi/en/envi/projects/wavellite.

1. Introduction

Environmental sensor networks are an important research tool
for earth and environmental science (Hart and Martinez, 2006).
They play a key role in the monitoring of the natural environment
and allow for unprecedented study of the dynamics of environ-
mental systems and processes (Hill et al., 2011).

Over the past decades, many small and large scale environmental
sensor networks have been deployed. The Finnish Station for

Measuring Ecosystem-Atmosphere Relations (SMEAR) is an example
fora large scale sensornetworkandHart andMartinez (2006)present
several others. SMEAR started its operations in 1991 with measure-
ments for SO2 in Eastern Lapland. It quickly grew to include several
other locations and properties of environmental phenomena,
including forweather, such as temperature, humidity, orwind speed;
for atmospheric gases, such as the concentration of carbon dioxide or
ozone; for aerosols, such as particle number concentration.

Today, SMEAR consists of four main stations: SMEAR I in Eastern
Lapland, SMEAR II in Hyytiälä, SMEAR III in Helsinki, and SMEAR IV
in Kuopio. The main stations consist of one or more substations.
Substations consist of a set of sensing devices. For instance, SMEAR
IV consists of two substations, at Puijo and at Savilahti. The sub-
station SMEAR IV-Puijo resides on top of the Puijo observation
tower (62�5403200 N, 27�3903100 E), 306 m above sea level and 224m
above the surrounding lake level. The Puijo observation tower is
located in the city of Kuopio, in a semi-urban environment. Kuopio
is situated in Eastern Finland, about 330 km to the northeast from
Helsinki. SMEAR IV-Puijo consists of sensing devices for the
monitoring of aerosols, weather, and atmospheric gases. Sensing
devices are manufactured by various vendors, including Thermo
Fisher Scientific Inc., TSI Inc., and Vaisala (Leskinen et al., 2009). In
this study, we used data by sensors of SMEAR IV-Puijo.
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Environmental sensor networks can produce large amounts of
syntactically and semantically heterogeneous data. SMEAR IV-Puijo
alone generates approximately 2.5 million data points every day, of
which1millionarebya single sensor (namely theoptical clouddroplet
spectrometer). To ensure its utility, such data must be managed with
appropriatehardwareandsoftwaresystems (Hart andMartinez, 2006;
Horsburgh et al., 2009). We distinguish the class of software systems
that organize sensor data and the class of software systems that in
addition interpret organized sensor data. The distinguishing feature
between the two classes is the abstraction from organized sensor data
with information acquired from sensor data, for instance information
about a monitored environmental phenomenon.

In discussing the design of a software system for publishing
environmental observations Horsburgh et al. (2009) underscore the
challenges of persistent storage and management, data access and
communication, data interoperability, and data discovery. These
challenges are typical to software systems that organize sensor data.
Organization of sensor data can be achieved in variousways. Systems
may build on conventional relational databasemanagement systems
(Horsburgh et al., 2009; Junninen et al., 2009) or so-called “NoSQL”
databases, such as Apache Cassandra. Systems may be tailored for
streamed data processing (Bonnet et al., 2001; Carney et al., 2002;
Madden and Franklin, 2002). Systems may use advanced data and
knowledge representation languages. We highlight Semantic Web
(Berners-Lee et al., 2001) technologies, which have found their
application in sensor networks and sensor data (Sheth et al., 2008)
with ontologies (Compton, 2011) and software architectures and
systems (Moraru and Mladeni�c, 2012) being developed for the pur-
pose of organizing sensor data.

Software systems that interpret sensor data build on organized
sensor data and include computational techniques in, e.g., machine
learning, inference, or complex event processing, to acquire infor-
mation from sensor data. In this study, information is for situations
and the acquisition of information is automated and may occur in
(near) real time. Information is represented explicitly. For example,
given organized observations for mean hourly concentration of
particulate matter with diameter less than 2.5 mm (PM2.5), complex
event processing can be used to automatically and continuously
detect situations of unhealthy exposure. The semantics of situations
are, typically, different from the semantics of observations. Spe-
cifically to situations of unhealthy exposure, ‘exposure’ entails a
longer time interval than mean hourly concentration and ‘un-
healthy’ requires mean hourly concentration to continuously
exceed a certain threshold.

Software systems that interpret sensor data are interesting for
several reasons. First, the problem is harder than mere sensor data
organization. The problem is known to various domains and several
software architectures have been proposed in the literature
(Clemente et al., 2013; Gorrepati et al., 2013; Conroy et al., 2011;
Gaglio et al., 2007; Liu and Zhao, 2005; Whitehouse et al., 2006;
Vassev and Hinchey, 2012). However, to the best of our knowledge,
the work in this area is fragmented. Second, information acquired
from sensor data is typically ofmore value to people than sensor data
(Barnaghi et al., 2012). Of specific interest in this study are scientists
and scientific computing on environmental sensor data. Third, for
applications that build on large sensor networks and/or high fre-
quency sensors it may not be desirable, or practicable, to persist
sensor data for offline analysis. For such applications it may be best
to acquire information over streams of sensor data, discard the
sensor data, and only retain the acquired information.

The problems addressed in this study are (1) the heterogeneity of
sensor data and (2) the explicit representation of situational
knowledge automatically acquired from heterogeneous sensor data
for environmental phenomena, specifically for SMEAR. Our aim is to
use Wavellite (Stocker et al., submitted for publication) and

demonstrate with a concrete application how it addresses these
problems. Wavellite is a generic software framework aimed at the
organization and interpretation of sensor data. It supports the pro-
cessing of heterogeneous sensor data to sensor observations with
homogeneous syntax and semantics; the mapping of sensor obser-
vations to dataset observations and the processing of datasets; the
acquisition of situational knowledge from datasets; and the repre-
sentation of situational knowledge. Extending our previous work
(Stocker et al., 2013), the environmental phenomena of interest in
this study are new particle formation and clouds. Hence, situations of
interest are events of new particle formation and cloud events,
occurring at Puijo. Information for such situations is acquired from
data by sensors used for the monitoring of aerosols and weather at
Puijo. To the best of our knowledge,Wavellite is unique in its support
for the representation of situational knowledge acquired from het-
erogeneous sensor data for environmental phenomena.

The contribution of this work is two-fold. First, for readers
interested in generic (and practical) approaches to the problem of
representing situational knowledge acquired from sensor data, this
work presents Wavellite and its application for a concrete use case
in aerosol science, with real sensors and sensor data as well as using
various computational methods, including machine learning. Sec-
ond, for aerosol scientists and, more generally, scientists in domains
in which sensors play an important role, this work presents a
software system that integrates the processes of sensor data or-
ganization and sensor data interpretation. Specifically to aerosol
scientists who study new particle formation, this work describes a
software system that could support their workflows.

The paper is structured as follows. In Section 2 we provide a
brief overview of Wavellite, specifically the logical structure of its
architecture. In Section 3 we present the concrete implementation
of the architecture. In Section 4 we briefly discuss how the imple-
mentation can be used in applications. In Section 5 we present our
experiment on SMEAR sensor data and the representation of situ-
ational knowledge for events of new particle formation and cloud
events. In Section 6 we discuss the results of our experiments and
Wavellite more generally. In Section 7 we present related work.
Finally, Section 8 draws some concluding remarks.

2. Architecture

We describe the logical structure of theWavellite architecture to
provide an overview of the layers, components, and modules as
well as their responsibilities and interactions. The logical structure
consists of four layers: measurement, observation, derivation, and
situation. The four layers build on each other, frommeasurement to
situation. Each layer serves a purpose and abstracts from underly-
ing complexity. Fig. 1 provides a graphical overview of the archi-
tecture. Figure D.7 (Appendix D) gives an overview of the most
important interfaces, in particular component interfaces with emit
and execute operations and operation parameters.

Layers consists of components. Components are categorized in
three broad classes: engine, reader, and writer. Components may
execute information entities received on incoming streams and
emit information entities to outgoing streams. Information entities
are messages, specifically measurements and their contextual in-
formation, sensor observations, dataset observations, and situa-
tions. Components and streams form the nodes and edges,
respectively, of a directed acyclic graph, known as a topology.
Associated to components, the architecture includes modules.
Modules are categorized in three broad classes: processing,
learning, and store. Modules implement computations for purposes
such as digital signal processing, machine learning, complex event
processing, inference, retrieval and storage. The knowledge base is
a third-party system.
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