Glomerular common gamma chain confers B- and T-cell-independent protection against glomerulonephritis

Yosu Luque^{1,2,3,10}, Dominique Cathelin^{1,2,8,9,10}, Sophie Vandermeersch^{1,2}, Xiaoli Xu^{1,2}, Julie Sohier^{1,2}, Sandrine Placier^{1,2}, Yi-Chun Xu-Dubois^{1,3}, Kevin Louis³, Alexandre Hertig^{1,2,3}, Jean-Christophe Bories⁴, Florence Vasseur⁵, Fabien Campagne⁶, James P. Di Santo⁷, Christian Vosshenrich⁷, Eric Rondeau^{1,2,3} and Laurent Mesnard^{1,2,3,6}

¹Unité Mixte de Recherche (UMR) 1155, Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France; ²Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France; ³Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France; ⁴Inserm, UMR 1126, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; ⁵Inserm U1020, Université Paris Descartes, Paris, France; ⁶Weill Cornell Medicine, The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York, USA; ⁷Unité Immunité Innée, Institut Pasteur, Inserm U1223, Paris, France; ⁸Plateforme d'imagerie et de cytométrie de l'hôpital Tenon, Unité Mixte de Recherche (UMR) 1155, Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France; and ⁹Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France

Crescentic glomerulonephritis is a life-threatening renal disease that has been extensively studied by the experimental anti-glomerular basement membrane glomerulonephritis (anti-GBM-GN) model. Although T cells have a significant role in this model, athymic/nude mice and rats still develop severe renal disease. Here we further explored the contribution of intrinsic renal cells in the development of T-cell-independent GN lesions. Anti-GBM-GN was induced in three strains of immune-deficient mice $(Rag2^{-/-}, Rag2^{-/-}Il2rg^{-/-}, and Rag2^{-/-}Il2rb^{-/-})$ that are devoid of either T/B cells or T/B/NK cells. The Rag2^{-/-}Il2rg^{-/-} or *Raq2^{-/-}Il2rb^{-/-}* mice harbor an additional deletion of either the common gamma chain (γ C) or the interleukin-2 receptor β subunit (IL-2R β), respectively, impairing IL-15 signaling in particular. As expected, all these strains developed severe anti-GBM-GN. Additionally, bone marrow replenishment experiments allowed us to deduce a protective role for the glomerular-expressed YC during anti-GBM-GN. Given that IL-15 has been found highly expressed in nephritic kidneys despite the absence of lymphocytes, we then studied this cytokine in vitro on primary cultured podocytes from immune-deficient mice $(Rag2^{-/-}Il2rg^{-/-} and Rag2^{-/-}Il2rb^{-/-})$ compared to controls. IL-15 induced downstream activation of JAK1/3 and SYK in primary cultured podocytes. IL-15-dependent JAK/SYK induction was impaired in the absence of γC or IL-2R β . We found γ C largely induced on podocytes during human glomerulonephritis. Thus, renal lesions are indeed modulated by intrinsic glomerular cells through the

$\gamma\text{C/IL-2R}\beta$ receptor response, to date classically described only in immune cells.

Kidney International (2017) **91,** 1146–1158; http://dx.doi.org/10.1016/ j.kint.2016.10.037

KEYWORDS: γ C chain; glomerulonephritis; IL-15; IL-2R β ; lymphocyte; podocyte

Copyright o 2016, International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

uman crescentic glomerulonephritis (CG) and rapidly progressive glomerulonephritis (GN) are lifethreatening immune-mediated diseases.¹ For many years, the pathogenesis of human rapidly progressive GN has been studied using the experimental model of passive anti-glomerular basement membrane GN (anti-GBM-GN), whereby heterologous anti-GBM serum is injected into rats or mice.² Following injection, there is a strong inflammatory response, which in a few days leads to severe glomerular and tubulointerstitial injuries^{3,4}: renal cells become surrounded by lymphocytes, a feature reminiscent of human CG.5-10 The development of anti-GBM-GN lesions in mice has been shown to involve a CD4⁺ T-cell response through either Th1^{4,11–14} or Th17^{15–17} pathways, whereas the T-cell subset of invariant natural killer (NK) T cells exerts a protective role independently of T-cell polarization.¹⁸

Interestingly, other studies have reported that mice or rats born athymic or "nude" (i.e., constitutively lacking T cells) still develop classical features of GN after anti-GBM serum injection, which is hypothesis generating and provides an opportunity to explore the particular role potentially played by renal cells, independently from T cells^{19,20} and by intrarenal signaling pathways or local factors normally used by lymphocytes. We thus induced an experimental GN in several immunodeficient mice strains: $Rag2^{-/-}$, $Rag2^{-/-}Il2rg^{-/-}$, and $Rag2^{-/-Il2rb^{-/-}}$ that are devoid of either T/B cells or T/B/NK

Correspondence: Laurent Mesnard, Inserm UMRS 1155, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France. E-mail: laurent.mesnard@aphp.fr

¹⁰YL and DC contributed equally to this work.

Received 8 April 2016; revised 19 October 2016; accepted 27 October 2016; published online 19 January 2017

cells. Compared with $Rag2^{-/-}$ mice, $Rag2^{-/-}Il2rg^{-/-}$ and $Rag2^{-/-}Il2rb^{-/-}$ strains carry the additional deletion of either the interleukin (IL)-2 receptor common gamma chain (γ C) gene ($Rag2^{-/-}Il2rg^{-/-}$) or the IL-2 receptor β subunit (IL-2R β) gene ($Rag2^{-/-}Il2rb^{-/-}$). Several IL receptor complexes share the γ C subunit (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21).²¹ Importantly, IL-15 and IL-2, together with an IL-15R α or IL-2R α coreceptor, respectively, have their action further restricted to the β subunit. The trimeric IL-15 receptor (IL-15R α , IL-2R β , γ C) is necessary for NK cell ontogeny and explains the absence of NK cells in $Rag2^{-/-}Il2rb^{-/-}$ mice. Here we show that γ C/ IL-2R β complexes expressed at the surface of intrinsic renal cells play an important role in the organization of renal lesions during severe immune-mediated GN.

RESULTS

Rag2^{-/-}II2rg^{-/-} mice are more susceptible than *Rag2^{-/-}* mice to anti-GBM serum

Experiments were first carried out to test the effect of anti-GBM serum in Rag2^{-/-} mice devoid of T/B cells, Rag2^{-/-}Il2rg^{-/-} mice devoid of T/B/NK cells, and wild-type (WT) mice from the same C57BL/6J background. Administration of anti-GBM serum impaired renal function parameters and induced lesions typical of GN in WT, Rag2^{-/-}, and Rag2^{-/-}Il2rg^{-/-} mice (Figure 1a) evaluated at day 9. No marked differences were observed in the levels of blood urea nitrogen and percentage of pathologic glomeruli between anti-GBM-treated WT mice and Rag2^{-/-} mice (Figures 1b and c). However, the score of interstitial lesions, assessed by tubular dilations and epithelial atrophy, was lower in anti-GBM-treated Rag2^{-/-} mice than in anti-GBM-GN-treated WT mice (Figure 1d). The levels of plasma urea, proteinuria, and the severity of renal histological lesions were even greater in anti-GBM-treated Rag2^{-/-}Il2rg^{-/-} mice than in anti-GBM-treated *Rag2^{-/-}* mice (Figure 1b-e). Anti-GBM-GN-treated *Rag2^{-/-}Il2rg^{-/-}* mice consistently exhibited more significant tubulointerstitial lesions, CD44 de novo staining (Supplementary Figure S1), a higher percentage of pathologic glomeruli (Figures 1c and d) and a more important decrease in the podocytic marker podocalyxin (Figure 1f) than anti-GBM-treated Rag2^{-/-} mice. Therefore, Rag2^{-/-} mice appeared only partially protected against anti-GBM-GN, whereas Rag2^{-/-}Il2rg^{-/-} mice were found to be more susceptible to anti-GBM serum than WT or Rag2^{-/-} mice were.

NK cells have no protective role against renal lesions induced by anti-GBM serum

 $Rag2^{-/-}$ mice have been shown to have a significant proportion of circulating NK cells (around 25% vs. 5% in WT mice), whereas $Rag2^{-/-}Il2rg^{-/-}$ mice totally lack NK cells.²² To determine the role of NK cells in the results shown, $Rag2^{-/-}Il2rg^{-/-}$ mice were replenished by NK cells (1 × 10⁶ cells/mouse), isolated from the spleen of WT C57BL/6J mice, and injected together with anti-GBM serum. At day 7, flow cytometry analysis showed that ~2% of circulating cells in $Rag2^{-/-}Il2rg^{-/-}$ mice were NK cells (Figure 2a). At day 9, NK cells were also detected in the mice kidneys (Figure 2b), where an increase in mRNA expression of the Nkg2b/Cd159a NK cell receptor (Figure 2c) was detectable. Despite that, plasma urea levels and renal lesions were similar to nonreplenished $Rag2^{-/-}Il2rg^{-/-}$ mice (Figures 2d to 2f). These findings suggest that NK cells do not account for the severity of GN in $Rag2^{-/-}Il2rg^{-/-}$ mice.

The lack of γC expression in renal cells worsens renal lesions induced by anti-GBM serum

Using bone marrow graft experiments, we then analyzed the role of kidney-expressed γC in the development of renal lesions in anti-GBM-GN. Bone marrow cells isolated from WT or Rag2^{-/-} CD45.1⁺ mice were grafted into irradiated $Rag2^{-/-}Il2rg^{-/-}$ CD45.2⁺ (referred to as ep. $\gamma c^{-/-}$) mice, in order to obtain chimeric mice knockout only for the γC chain in nonimmune cells. Six weeks after bone marrow transplantation, at least 90% of circulating cells expressed the CD45.1⁺ marker in Rag2^{-/-}Il2rg^{-/-} CD45.2⁺ recipients (Supplementary Figure S2A). NK cell counts measured after bone marrow transplantation are represented in Supplementary Figure S2B. In all anti-GBM-GN-induced $ep.\gamma c^{-/-}$ chimeric mice, plasma urea levels were consistently higher than in mice with WT epithelia (Figure 3a). All ep. γc^{-1} chimeric mice exhibited significantly severe glomerular lesions with numerous extracapillary crescents (Figures 3b and e) and proteinuria (Figure 3d). In addition, the tubulointerstitial lesions were more severe in $ep.\gamma c^{-/-}$ mice than in mice with WT epithelia, independent of the origin of the bone marrow (WT or Rag2^{-/-}) (Figures 3c and e). These findings suggest that γC expressed on renal cells plays a protective role during anti-GBM-GN.

Despite the absence of lymphocytes, IL-15 appears as the main effective ligand of γC in the renal cortex during GN

We next analyzed relative expression levels of cytokines (e.g., IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21) acting through receptor complexes containing the common γC subunit in the renal cortex of WT, $Rag2^{-/-}$, or $Rag2^{-/-}\gamma c^{-/-}$ mice (Figure 4a) after anti-GBM-GN. In all cases, IL-21 and IL-4 mRNA were undetectable. The level of IL-2 mRNA remained very low in all mouse strains (Figure 4a). IL-7 and IL-9 mRNA were detectable in the renal cortex, but no difference was observed among WT, Rag2-'-, or Rag2-'-Il2rg-'- mice. Interestingly, IL-15 mRNA was found to be highly expressed in the renal cortex after anti-GBM-GN in the absence of T/B lymphocytes (Rag2^{-/-} mice) or even in the absence of T/B/NK cells in *Rag2^{-/-}Il2rg^{-/-}* animals (Figure 4a). Thus, and as described by others,²³ IL-15 is abundantly produced by intrinsic renal cells, which we confirmed by immunohistochemistry of the renal cortex (Figure 4b). We also showed that from cytokines classically associated with the γC response, only IL-15 plasma levels were found to be higher in Rag2^{-/-}Il2rg^{-/-} mice when compared with WT animals

Download English Version:

https://daneshyari.com/en/article/5688497

Download Persian Version:

https://daneshyari.com/article/5688497

Daneshyari.com