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a b s t r a c t

Singapore Strait located between the South China Sea and Andaman Sea is driven by tides coming from
both sides and the hydrodynamics in this area is complex. From the viewpoint of long term forecasting,
however, models developed for this area suffer from limitations introduced by parametric uncertainty,
absence of data for appropriate specification of forcing and lateral boundary conditions. For improving
the model forecasts, a data assimilation technique based on ensemble Kalman filter is implemented and
applied. Based on the latter, an ensemble based steady state Kalman filter is derived to address the
computational limitation for daily operational forecasting. Via a twin experiment on a simulation period
that includes a significant storm surge event (sea level anomaly) the skills of both data assimilation
schemes are assessed and compared.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding ocean dynamics and the physics of its driving
forces is important for safe navigation and offshore operations.
With the development of information technology, numerical ocean
models have become popular to describe the dynamics of water
bodies in shelf seas as well. However, the numerical models tend to
be less than perfect due to reasons such as incomplete represen-
tation of the ocean physics and, other simplifying assumptions,
numerical approximations, insufficient resolution, uncertainty in
the model parameters and uncertainty in the forcing terms
(Babovic and Fuhrman, 2002; Sun et al., 2008).

The water body of interest, Singapore Strait is one of the busiest
shipping routes in the world and its coastal area is heavily utilized
for port activities or industrial facilities with rapid economic
development. Providing accurate hydrodynamic information of the
depth-integrated, barotropic regional water motion is important
for scheduling of navigation, docking and minimizing other po-
tential hazards. The hydrodynamics of Singapore regional waters,
however, is complex since the water motion in Singapore Strait is
driven by tides originating from South China Sea, Andaman Sea and

Java Sea. With the objective to provide reliable hydrodynamic in-
formation for the region, the Singapore regional model (SRM) was
developed by Kernkamp and Zijl (2004). The model was later
improved by Kurniawan et al. (2010) by analysing the sensitivity of
the tidal representation in the coastal waters around Singapore to
various modelling parameters, leading to improved tidal repre-
sentation. For a detailed description of model setup, discretization,
parameters, etc., see Kernkamp and Zijl (2004), Ooi et al. (2009) or
Kurniawan et al. (2011). While the SRM has been shown to be able
to capture the key depth-integrated barotropic hydrodynamic
phenomena and yields desirable forecasts in most scenarios, the
model is less capable to accurately predict detailed flows and water
levels due to the nonlinear nature of the uncertainties especially
near the coast. To improve the accuracy of model predictions,
various data assimilation procedures can be applied (Van Loon
et al., 2000; Babovic and Fuhrman, 2002; Aguirre et al., 2005;
Solomatine and Ostfeld, 2008; Van Velzen and Segers, 2010; Liu
et al., 2012; Zijl et al., 2013). The methods are classified into four
categories (Babovic et al., 2005):

(a) updating of input parameters,
(b) updating of model parameters,
(c) updating of state variables, and
(d) updating of output variables.
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In method (a), the input variables are updated by certain itera-
tive procedures to address the input uncertainties whereas; in
method (b) the model parameters are updated through calibration
techniques. The main difference between method (c) and method
(d) is that in method (c) the data assimilation process is integrated
with the model and the solution procedure has to be adjusted;
while in method (d) the model solution procedure and the data
assimilation procedure for the model are detached. Updating of
state variables by Kalman filter techniques provides an optimal
update for linear systems (Kalman and Bucy, 1961). For a nonlinear
system the extended Kalman filter (EKF) is a natural choice, as it
extends the basic algorithm to nonlinear problems by linearizing
the nonlinear function around the current estimate. As such, it is
found to be capable and efficient in handling high dimensional
systems like ocean dynamics and meteorological weather fore-
casting (Heemink et al., 1997; Sorensen and Madsen, 2004;
Karssenberg et al., 2010; Wei and Malanotte-Rizzoli, 2010). For
strongly nonlinear systems EKF is known to fail to estimate un-
measured variables of nonlinear systems (Aguirre et al., 2005;
Solomatine and Ostfeld, 2008). The Ensemble Kalman filter
(EnKF), one of the most advanced sequential assimilation methods
(Evensen, 1994, 2003; Hamill, 2006), extends the conventional
Kalman filter using an ensemble forecast computed from the
nonlinear model directly to estimate an error covariance matrix.
This technique has been successfully applied in different applica-
tions with varying range of nonlinearity (Evensen, 1994;
Houtekamer and Mitchell, 1998; Zang and Malanotte Rizzoli,
2003; Heemink et al., 2009; Zamani et al., 2010).

To improve the SRM model further with the aim of day-to-day
detailed forecasting, the application of data assimilation schemes
based on ensemble Kalman filter is found to be very beneficial
(Babovic et al., 2011; Karri et al., 2013). These assimilation methods
integrate the model solution with the available observations to
obtain a practically improved but theoretically suboptimal solution
up to the present time epoch. However, for these highly nonlinear
dynamic systems, the implementation of EnKF demands much
computational effort. Therefore, a steady state Kalman gain derived
from EnKF termed an ensemble steady state Kalman filter (EnSSKF)
is proposed to reduce the computational demand without
compromising on the accuracy of the forecast improvement.

The objective of the study is to evaluate and compare the skills
of data assimilation schemes EnKF and EnSSKF to correct the model
states of SRM and accurately predict the water levels and currents
in Singapore regional waters. For a historic period that includes a
significant surge event a twin experiment is defined. The advantage
of such a twin experiment approach is that model based; synthetic
observations used in the evaluation are available at all model
points, allowing skill evaluations and comparisons at positions
where actual measurements have not been made. Both data
assimilation schemes are applied using the open source data
assimilation framework OpenDA (www.openda.org) to assimilate
the observations in the model states of SRM. Initially, the EnKF is
applied with ensemble size NE ¼ 64 to derive the Kalman gain at
each time step. Furthermore, a steady state gain is computed based
on the average of all the gains over time. Using this steady state
Kalman gain, the derived EnSSKF is also used for estimating the
water levels and currents. In order to compare and evaluate the
performances of both EnKF and EnSSKF, they are subjected to
hindcast or reanalysis runs where observations are available at
different tidal gauge stations to analyse the quality of the improved
estimates. To statistically validate the forecast ability of these two
data assimilation schemes for different time horizons, the cor-
rected/updated states are used as initial states and the determin-
istic model is run into the future in (retrospective) forecast mode,
for a prediction horizon 1e24 h.

2. Data assimilation schemes

2.1. Ensemble Kalman filter

The ensemble Kalman filter, which was first proposed by
Evensen (1994), is a suboptimal estimator. The error statistics in
this method are predicted by using a Monte Carlo integration to
solve the FokkerePlanck equation (Gillijns et al., 2006). A brief
description of the EnKF is included here and further details are
available in references (Evensen, 2003; Hamill, 2006). The
nonlinear model propagates in time to obtain a forecast (back-
ground) estimate of model states xk/k�1 at time tk. The initial con-
dition of state vector bxkjk�1 is the estimate at time tk conditioned on
the measurement until time tk. At every time step tk, the state
vector ðxikjk�1Þ of each ensemble member i, is forced by the model
error wi

k and propagates in time. The model errors were drawn
from a predefined distribution with zero mean and covariance
matrix. The update of the state vector can be estimated through the
mean of the ensemble as

bxkjk�1 ¼ 1
N

XN
i¼1

xikjk�1; (1)

where N is the maximum ensemble size.
The error covariance matrix of the update state vector, Pkjk�1 is

calculated as a covariance matrix of the ensemble

Pkjk�1 ¼ Lkjk�1L
T
kjk�1

Lkjk�1 ¼ 1ffiffiffiffiffiffiffiffi
N�1

p PN
i¼1

�
xikjk�1 � bxk=k�1

� (2)

The Kalman gain Kk, which represents the optimal weighting
between the error covariance of the model states Pk and the errors
of the observed state Rk, is calculated as

Kk ¼ Pkjk�1H
T
k�

HkPkjk�1HT
k þ Rk

� (3)

The updated state vector for each ensemble is calculated as the
gain weighted difference between the observed states zik and the
transformed model forecast:

xikjk ¼ xikjk�1 þ Kk

�
zik � Hkx

i
kjk�1

�
(4)

where, Hk is the measurement operator that maps the state vector
to the measurement domain.

2.2. Steady state Kalman filter

Canizares et al. (2001) noticed the fact that for high dimen-
sional systems, the error covariance matrix often becomes nearly
invariant after 1e2 days of simulation and in some instances
even less depending on the nonlinearity of the system and the
simulation time step. In order to make use of this feature, a
constant Kalman gain (weighting matrix) can be calculated
during 1e2 days simulation. This will be similar to an optimal
interpolation method, although in this case the constant
weighting matrix has been calculated from a time variant
sequential data assimilation method. So, in the steady state
Kalman filter, the constant Kalman gain K is computed offline to
circumvent the error covariance propagation. This course of ac-
tion makes the steady state Kalman filter the most cost efficient
among the suboptimal routines.
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