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a b s t r a c t

Failure to consider major sources of uncertainty may bias model predictions in simulating watershed
behavior. A framework entitled the Integrated Parameter Estimation and Uncertainty Analysis Tool
(IPEAT), was developed utilizing Bayesian inferences, an input error model and modified goodness-of-fit
statistics to incorporate uncertainty in parameter, model structure, input data, and calibration/validation
data in watershed modeling. Applications of the framework at the Eagle Creek Watershed in Indiana
shows that watershed behavior was more realistically represented when the four uncertainty sources
were considered jointly without having to embed watershed behavior constraints in auto-calibration.
Accounting for the major sources of uncertainty associated with watershed modeling produces more
realistic predictions, improves the quality of calibrated solutions, and consequently reduces predictive
uncertainty. IPEAT is an innovative tool to investigate and explore the significance of uncertainty sources,
which enhances watershed modeling by improved characterization and assessment of predictive
uncertainty.

� 2014 Elsevier Ltd. All rights reserved.

Software availability

Name of software: IPEAT
Program language: MATLAB
Developer: Haw Yen, research associate of the Texas A&M

University, developed and completed the code of IPEAT in
August, 2012.

The source code: Available from Haw Yen, 720 East Blackland Road,
Temple, Texas 76502, USA.

Tel: þ1 254 774 6004, hyen@brc.tamus.edu

1. Introduction

The ability of watershed models to simulate and predict real
world phenomena has been considerably advanced in recent years.
Simultaneously, the number of model parameters in empirically or

physically based functions has also increased (Yang et al., 2008; Bai
et al., 2009), which increases the difficulty of manual calibration.
Fortunately, through the progressive improvement of computer
science and development of auto-calibration techniques, compu-
tational expense of model calibration is no longer a major challenge
(Duan et al., 1992; Tolson and Shoemaker, 2007; Vrugt et al., 2009a;
Yen, 2012). Thus, modelers can now focus more attention on
appropriate representation of watershed phenomena and
improved modeling methodology.

However, models are only simplified representations of natural
systems. Actual watershed processes are more complex and vari-
able than what can be generally represented in even most sophis-
ticated models (Haan et al., 1995). Uncertainty due to model
parameterization, input data, model structure, and observations
used for model calibration can significantly impact the accuracy of
model outputs. For clarification in this study the uncertainty from
forcing inputs (input data) should not be regarded as a part of error
contributed from model parameterization. As pointed by Ajami
et al. (2007) that it is not appropriate to assume all prediction
uncertainty is contributed by model parameterization as it is
typical inwatershed calibration/validation. On the other hand, even
when uncertainty from parameterization, input data, and/or model
structure is included, the commonly used goodness-of-fit statistics
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which are calculated relative to observational data need to be
modified considering measurement uncertainty. Because of
imperfect observation, Harmel and Smith (2007) and Harmel et al.
(2010) have proposed to consider measurement uncertainty in the
evaluation of goodness-of-fit statistics in hydrologic and water
quality modeling. In fact, failing to consider one or more sources of
uncertainty may cause biased model calibration results and corre-
sponding model predictions.

In review of literature, parameterization uncertainty has
received the most attention in previous studies (e.g., Kuczera and
Parent, 1998; Osidele et al., 2006; Gallagher and Doherty, 2007;
Hassan et al., 2009; Loosvelt et al., 2011; Rasmussen and
Hamilton, 2012; Joseph and Guillaume, 2013). The parameter-
calibration approach indicates that parameter errors are the ulti-
mate attribution of all possible sources (Ajami et al., 2007). Pre-
dictive uncertainty contributed by model input data has been
explored and proven to have significant impact on model calibra-
tion (Kavetski et al., 2002; Ajami et al., 2007; Strauch et al., 2012).
Wang (2008) applied the Bayes inferences to stochastically conduct
data generation with non-concurrent, missing input data. In addi-
tion, other studies incorporate input uncertainty explicitly during
the calibration processes (Kavetski et al., 2002; Ajami et al., 2007). A
further source of uncertainty is model structure. The importance of
structural uncertainty was demonstrated by Refsgaard et al. (2006)
and Clark et al. (2008). One of the most frequently cited approaches
for exploring the structural uncertainty is to aggregate different
models through the Bayesian Model Averaging (BMA) technique,
where the significance of simulation performance for each imple-
mentedmodel can be stated by BMAweights (Kavetski et al., 2006a,
2006b; Ajami et al., 2007; Duan et al., 2007). The contribution of
uncertainty in calibration/validation data has only recently been
incorporated into evaluation of watershed models. For example,
Ullrich and Volk (2010) investigated the influence of uncertainty in
NO3eN monitoring data on model calibration and evaluation. Prior
to work by (Harmel et al., 2006, 2009), no comprehensive frame-
work for estimation of uncertainty in measured discharge and
water quality data was available. Following the development of this
framework, methods were further developed by Harmel and Smith
(2007) and Harmel et al. (2010) to modify goodness-of-fit in-
dicators to consider uncertainty in measured data used for model
calibration/validation evaluation. Uncertainty has also been
explored in associated with other techniques. A Bayesian-based
framework assisted by the Morris global sensitivity analysis
method was developed to evaluate performance of two models
(Minunno et al., 2013), and a set-membership approach was
implemented to identify parameter and prediction uncertainty
while conducting sediment yield simulations (Keesman et al.,
2013).

The main contribution of this study is the development of a
framework that facilitates simultaneous evaluation of parameteri-
zation, input data, model structure, and calibration/validation data
uncertainty and their contribution to predictive uncertainty, enti-
tled Integrated Parameter Estimation and Uncertainty Analysis Tool
(IPEAT). The specific objectives of this study were to: (i) quantify
predictive uncertainty while propagating different sources of un-
certainty and (ii) calibrate the Soil and Water Assessment Tool
(SWAT) model with the consideration of four sources of uncertainty
(as opposed to typical model calibration of considering only
parameter uncertainty) to understand the role and importance of
uncertainty source on model prediction (best solution) and pre-
dictive uncertainty. In this study, the model structural uncertainty
analysis was limited to the two modified SCS, now the Natural
Resource Conservation Service (NRCS), curve number method
(USDA Soil Conservation Service, 1972; USDAeNRCS, 2004) for
calculating surface runoff within the SWAT2009 model. A set of

other models can also be included in the analysis, which is not the
focus of this study.

2. Methods and materials

2.1. Framework of incorporating different sources of uncertainty

The proposed framework to incorporate uncertainty from parameterization,
input data, model structure, and observation data used for calibration is provided in
Fig. 1 where it is compared with typical watershed modeling.

2.1.1. Input data uncertainty
Input data such as rainfall, temperature, soils, and land use/cover are critical

drivers for watershed simulation. For simplicity in this study only the uncertainty
from rainfall was considered. The integrated Bayesian uncertainty estimator (IBUNE)
(Ajami et al., 2007) was used to account for uncertainty contributed by rainfall data
through an input error model as shown in Eq. (1), which assumed a random
Gaussian error as a multiplier for every input observation (Ajami et al., 2007).

Ra t ¼ kRt ; kwN
�
m; s2m

�
(1)

where Ra_t and Rt are the adjusted and observed rainfall depth at time step t (e.g., the
given day t), respectively, k is the normally distributed random noise with mean m,
m ˛ [0.9,1.1] and variance s2m , s

2
m˛½1e� 5;1e� 3� as defined by (Ajami et al., 2007).

For each SWAT simulation run, the two variables (m and s2m) from this input
error model were added as two unknown parameters to the system and a random
multiplier (k) to each time step was drawn from the normal distribution Nðm; s2mÞ. A
parameter estimation technique, dynamically dimensioned search (DDS) (Tolson
and Shoemaker, 2007) (see Section 2.1.3.) was used to search the SWAT model pa-
rameters and the input error model parameters (m and s2m) simultaneously. Through
SWAT simulation, the uncertainty associated with the input error model parameters
and the SWAT model parameters were propagated through the system.

2.1.2. Model structure uncertainty
Uncertainty is also contributed by the inability of the model structure to

perfectly mimic watershed processes. Different models have different degrees of
complexity and different algorithms tomimic natural processes. Evenwithin a given
modeling system, alternative methods may be offered. Uncertainty due to model
structure can significantly impact the accuracy of model outputs. Although re-
searchers have included a set of mutually exclusive models in analyzing model
structural uncertainty (e.g., Abrahart and See, 2002; Georgakakos et al., 2004; Ajami
et al., 2007), there are potentially many alternativeways to formulate the analysis by
combining different models considering there are many hydrologic and water
quality models out there. In this study, we only considered the widely used SWAT
model. SWAT offers two options to calculate the curve number retention parameter,
s. The first one is the traditional method which allows s to vary with soil profile
water content (SCSI). An alternative method (SCSII) allows s to vary with accumu-
lated plant evapotranspiration. These twomethods were considered in this study for
model structural uncertainty.

SWAT is a continuous-time and semi-distributed parameter model, which is
developed to simulate/predict hydrologic and water quality processes at the large
watershed scale (Arnold et al., 1993, 1998) and it is widely applied for assessing
water resource and nonpoint-source pollution problems (e.g., Du et al., 2005;
Jayakrishnan et al., 2005; Green et al., 2006; Moriasi et al., 2009; Arnold et al.,
2010; Chiang et al., 2010; Douglas-Mankin et al., 2010; Ghebremichael et al.,
2010; Kim et al., 2010; Meng et al., 2010; Srinivasan et al., 2010). Comprehensive
descriptions of SWAT are presented in Gassman et al. (2007) and Arnold et al.
(2012).

The Bayesian Model Averaging (BMA) was used in this study for account for
model structural uncertainty. BMA is a probabilistic scheme for model combination
(Raftery et al., 2005; Ajami et al., 2007; Wöhling and Vrugt, 2008). The posterior
distribution of the BMA prediction, yBMA, under the two SWAT model options of
M1 ¼ SCSI and M2 ¼ SCSII is given as:

p
�
yBMA

���M1;M2;
~X; ~y

�
¼

X2
k¼ 1

p
�
Mk

���~X; ~y�� pk
�
yk
���Mk;

~X; ~y
�

(2)

where ~X is the SWAT model input forcing data, ~y is SWAT output variables of in-
terests (here streamflow and water quality NO3eN), pðMkj:~X; ~yÞ is the posterior
probability of model Mk, pkðykj:Mk;

~X; ~yÞ is the forecast posterior distribution of yk
given prediction quantities from model Mk with input data ~X and corresponding
prediction ~y. Thepkðykj:Mk;

~X; ~yÞ is represented by the normal distribution with
mean equal to the output of model Mk and standard deviation sk. The term
pðMkj:~X; ~yÞ is also known as the likelihood of model Mk being the correct model, or
BMA weight, which should be summed to one.

X2
k¼1

p
�
Mk

���~X; ~y� ¼ 1 (3)
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