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a b s t r a c t

In large rivers, complex sediment dynamics cause rapid changes in the position and shape of bed deposits.
Regular monitoring of changes in river bed geometry is essential for assessing the nature of morphological
change and associated bed load during low, high, and medium flow conditions. We demonstrate the
application of Direct Sampling (DS) for patching partial river morphological surveys to generate complete
maps of the river morphology, by incorporating prior knowledge from bathymetry data collected in
different seasons at collocated or adjacent reaches. This novel approach is based on multiple-point sta-
tistics (MPS), which uses a training image (TI) to provide prior statistical and architectural constraining
data. In this study high and low resolution bathymetry data from a reach of theMississippi river have been
used. High-resolution measurements were conducted using Multi-beam-echo-sounder (MBES), which
provides very detailed bed geometry at high spatial resolution. Thesemeasurements cannot be acquired at
intervals frequent enough to characterize the rapid sedimentological processes. Low resolution bathym-
etry data can be obtained at frequent intervals but at sparse locations, by installing depth measuring
sensors on boats passing the study reach several times aweek. The DSmethod is used to simulate the high
resolution bathymetry at the frequency of the low-resolution data. In the simulations, themethod uses the
bed geometry information contained in theMBES high-resolution surveys, the local information contained
in the boat-borne low-resolution measurements, and provides an updated bathymetry map with quan-
tified uncertainty.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Accurate estimation of bathymetry is necessary for evaluating
changes in river-channel morphology (Fonstad and Marcus, 2010),
determining reservoir volume (Furnans and Austin, 2008), water
quality modeling (Mantas et al., 2011), providing boundary condi-
tions for numerical modeling of flow dynamics and sediment
transport (Liu et al., 2012), and for measuring the movement of
sediment in the waterway (Jiang et al., 2011). The impact of sedi-
ment dynamics on spatio-temporal patterns of erosion and depo-
sition is evaluated by observing the differences in digital elevation
models, which are created from repeat bathymetric surveys (Fuller
and Basher, 2013).

In shallow rivers and coastal areas, there is growing interest in
using remote sensing to accurately estimate the bathymetry
(Legleiter and Roberts, 2009). A variety of measurement tools for
remote bathymetry surveying are available, including satellite im-
agery (Stumpf et al., 2003), LiDAR technology (Bailly et al., 2010) or
a combination of these methods (Coleman et al., 2011; Legleiter,
2013). However, these methods fail to retrieve the bathymetry of
deep and turbid rivers. In such cases, Multi-beam-echo-sounder
(MBES) sonar systems have been employed in recent decades to
measure the bed morphology in oceans, deep lakes and rivers
(Simmons et al., 2007). MBES has the advantage of covering large
areas with each individual LASER pulse, or ping of sound, and thus
scans distinguishable morphological patterns at the river bottom at
high-accuracy and high-resolution spatial scales (Costa et al., 2009;
Cutter et al., 2003; Masetti and Calder, 2012). In large rivers, the bed
shape can change rapidly as a consequence of morphodynamic
processes. Accurately and efficiently keeping track of the changes in
bathymetry requires frequent detailed surveys. Although MBES
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provides high-resolution data, the high cost prevents its regular use
(Quinn and Boland, 2010). The alternate option of Single-beam-
echo-sounders (SBES) bathymetry surveying is inexpensive and
can be used to rapidly obtain low-resolution data. However, SBES
provides inadequate gap-free data (Jena et al., 2012). An econom-
ically feasible option is to conduct detailed surveys at specific in-
tervals, for example after extreme events, and then update the
maps using low resolution but cost-effective data.

Various methods have been proposed to integrate bathymetry
data from multiple sources including bathymetry fusion (Elmore
and Steed, 2008) or bathymetry merging (Gesch and Wilson,
2002). Merging or fusion of bathymetry data has been used to
improve the resolution of a historical topography map with sat-
ellite imagery (Alcântara et al., 2010), to combine observation of
two satellites (Sindhu et al., 2007) and to enhance satellite im-
agery with bathymetry data obtained from LiDAR (Calder, 2006;
Wozencraft and Millar, 2005). However, to the best of our
knowledge, there is a scarcity of approaches for updating high-
resolution infrequent bathymetry surveys with more frequent
but lower resolution data. This is a challenging problem because it
involves integrating data types of a very different nature. The
infrequent high-resolution surveys provide accurate bed feature
information such as the shape and size of the sand bars, the spatial
frequency of their occurrence or the spatial continuity of deeper
areas. However, the local information in these surveys is quite
weak. Given the rapid changes in the river bathymetry, any survey
e no matter how accurate e is likely to be outdated in a couple of
months (or days during high flow periods). The boat-mounted
acoustic measurements (SBDM) are frequent enough to be
locally accurate; however they only cover a limited area. There-
fore, it would be desirable to have the ability to extract the bed
feature properties of the MBES data, and adapt them such that
locally they correspond to the SBDM measured values. Ideally,
away from these measurements the bathymetry should still pre-
sent a similar spatial morphology and bed features as observed in
the MBES survey, but with an associated uncertainty due to the
lack of local information.

Geostatistics is a natural tool for analyzing spatially correlated
variables. Ordinary kriging is commonly used in interpolating
river channel bathymetry to obtain bed topography (Carter and
Shankar, 1997; Chappell et al., 2003; Legleiter and Kyriakidis,
2008; Merwade, 2009; Merwade et al., 2006). Cokriging algo-
rithms have been applied in the mapping of bedforms by
considering bathymetry, slope, and sediment input (Jerosch,
2012). Using such approaches, the integration of newly
measured data to the already developed base map would require
the updating of variogram parameters (Barnes and Watson, 1992)
and kriging to obtain an updated surface (Jha et al., 2011). How-
ever a fundamental issue is that kriging is based on linear geo-
statistics, which assumes that the mean and variance of the
increments are spatially stationary (Goovaerts, 1997), and pro-
vides smooth interpolated values at unsampled locations by giv-
ing more weight to local neighborhood data than the global
statistical properties (Journel and Huijbregts, 1978). More gener-
ally, linear geostatistics are not designed to represent low entropy
patterns and salient features such as those formed by river flow
mechanisms (Journel and Zhang, 2006). A detailed representation
of bathymetry patterns is however critical because these patterns
exert a strong influence on sediment transport (Shelley et al.,
2013), and control the flow mechanisms in and out of the river
bed (Gooseff et al., 2006). The smoothed representation typical of
kriging approaches is therefore not appropriate for certain types
of applications.

The issue of smoothing with kriging and the need to represent
specific patterns motivated the development of multiple-point

geostatistics (MPS) (Guardiano and Srivastava, 1993). MPS is a
non-parametric approach, and as such it is free from linearity or
multi-Gaussianity assumptions (Gómez-Hernández and Wen,
1998). The main feature of MPS is that it uses training images to
describe complex patterns of spatial continuity. In this paper we
solve the integration of bathymetry data collected at different
resolutions and at different time periods using an approach based
on MPS.

Most MPS techniques derive arrangements of values from a
training image and store them in a database (Strebelle, 2002). The
database is then used to retrieve the conditional probabilities for
the simulation. Early MPS methods such as SNESIM (Strebelle,
2002) were aimed at simulating categorical variables, for example
geological facies or land use classes (Boucher et al., 2008; Feyen and
Caers, 2006). However, recent MPS algorithms such as SIMPAT
(Arpat and Caers, 2007), FILTERSIM (Zhang, 2006), and Direct
Sampling (Mariethoz et al., 2010) allow for the use of continuous
variables like bathymetry. In this paper, we use Direct Sampling
(DS), which compared to other continuous-variable based MPS
methods, has a number of advantages relevant for applications to
bathymetry:

1) It does not require a database of patterns, and is therefore
memory efficient and can handle very large data sets;

2) It is very effective for data conditioning because it does not
use systems such as data templates or multiple-grids, which
require approximations on the conditioning data locations;
and

3) It allows usingmultivariate training images, and this possibility
can be used to take into account complex non-stationarity,
which is a common feature for bathymetry data.

Recently, DS has been successfully applied in the stochastic
downscaling of climate models (Jha et al., 2013), the completion of
partially-informed remote sensing images (Mariethoz et al., 2012)
and the incorporation of prior geological concepts in subsurface
models (Mariethoz and Kelly, 2011). In this study DS is used to
merge the infrequent detailed information contained in MBES
bathymetric surveys and data collected at a higher frequency but
with partial coverage by boat-borne surveys. Patterns contained in
MBES data recorded during the highest and lowest river-flows are
used as training images. The patterns in those training images are
conditioned to the more recently acquired SBDM data, which re-
sults in an updated map of bathymetry that is accurate at the
sparse locations measured at high frequency, and which honors
the patterns observed in the detailed but infrequent MBES sur-
veys. To the best of our knowledge, this is the first time two
equiprobable training images have been used in a DS simulation to
provide the complete range of values for a single intermediate
state.

2. Methodology

The methodology adopted to update the river bathymetry is
based on the Direct Sampling (DS) geostatistical simulation
approach. It generates realizations of a variable Z that present the
same spatial continuity as a given training image, and given
conditioning data. The inputs are therefore a training image, a
simulation grid, and a set of conditioning data. The nodes of the
simulation grid are visited sequentially in a random order. For
each simulation grid node, the pattern formed by the neighboring
values is defined, and the training image is sampled to find a
representative location having a similar neighborhood. The value
at this representative location is then pasted in the simulation
grid.
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