review www.kisupplements.org ## The establishment and validation of novel therapeutic targets to retard progression of chronic kidney disease Carol Pollock^{1,21,22}, Anna Zuk^{2,21}, Hans-Joachim Anders³, Mohammad Reza Ganji⁴, David W. Johnson^{5,6,7}, Bertram Kasiske^{8,9}, Robyn G. Langham¹⁰, Roberto Pecoits-Filho¹¹, Giuseppe Remuzzi^{12,13,14}, Jerome Rossert¹⁵, Yusuke Suzuki¹⁶, Tetsuhiro Tanaka¹⁷, Robert Walker¹⁸, Chih-Wei Yang¹⁹ and Joseph V. Bonventre^{20,22} ¹Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; ²Akebia Research and Development Department, Akebia Therapeutics Inc., Cambridge, Massachusetts, USA; ³Division of Nephrology, Klinikum der Universität München (LMU), München, Germany; ⁴Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran; ⁵Centre for Kidney Disease Research, University of Queensland at Princess Alexandra Hospital, Brisbane, Australia; ⁶Translational Research Institute, Brisbane, Queensland, Australia; ⁸Department of South and Ipswich Nephrology and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia; ⁸Department of Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA; ⁹Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA; ¹⁰Monash Rural Health, Monash University, Clayton, Victoria, Australia; ¹¹Department of Internal Medicine, School of Medicine, Pontificia Universidade Catolica do Paraná, Curitiba, Brazil; ¹²IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; ¹³Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; ¹⁴University of Milan, Milan, Italy; ¹⁵Thrasos Therapeutics, Inc., Boston, Massachusetts, USA; ¹⁶Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan; ¹⁷Division of Nephrology and Endocrinology, The University of Tokyo School of Medicine, Tokyo, Japan; ¹⁸Department of Medicine, University of Otago, Dunedin, New Zealand; ¹⁹Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; and ²⁰Renal Unit, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA The focus of this article is to define goals and resulting action plans that can be collectively embraced by interested stakeholders to facilitate new therapeutic approaches to mitigate chronic kidney disease progression. The specific goals include identifying druggable targets, increasing the capacity for preclinical and early clinical development, broadening the availability of new therapeutic approaches, and increasing investment in the development of new therapies to limit chronic kidney disease. Key deliverables include the establishment of new regional, national, and global consortia; development of clinical trial networks; and creation of programs to support the temporary mutual movement of scientists between academia and the biotechnology and pharmaceutical sector. Other deliverables include cataloging and maintaining up-to-date records to collate progress in renal research and development, inventorying the capacity of research and clinical networks, and describing methods to ensure novel drug development. Kidney International Supplements (2017) **7,** 130–137; http://dx.doi.org/10.1016/j.kisu.2017.07.008 KEYWORDS: drug re-purposing; personalized medicine; targeted treatment Copyright © 2017, International Society of Nephrology. Published by Elsevier Inc. All rights reserved. **Correspondence:** Carol Pollock, Kolling Institute of Medical Research, University of Sydney, Level 7 Kolling Building, Royal North Shore Hospital, St Leonards NSW 2065, Sydney, Australia. E-mail: carol.pollock@sydney.edu.au ## **Current status** Therapeutic strategies that positively impact the progression of chronic kidney disease (CKD) to inevitable renal replacement therapy are lacking. In proteinuric nondiabetic chronic nephropathies, blockade of the renin-angiotensin-aldosterone system with angiotensin-converting enzyme inhibitors have delayed the onset of end-stage kidney disease, as documented in the Ramipril Efficacy in Nephropathy study. In parallel, ramipril-treated patients exhibited a decrease in proteinuria that was inversely correlated with the decline of glomerular filtration rate, suggesting a nephroprotective effect of reducing protein trafficking. However, dual blockade of the renin-angiotensin-aldosterone system using an angiotensinconverting enzyme inhibitor and an angiotensin II receptor blocker or a renin inhibitor have not proved to be a solution to address the existing treatment gap due to complications of hyperkalemia and acute kidney injury.^{2,3} In the last 12 months, however, secondary analyses of the Empagliflozin Cardiovascular Outcome Event study in patients with diabetes mellitus at a high risk of cardiovascular disease and renal dysfunction have shown a decrease in CKD progression and a reduction in hard renal endpoints, albeit in small numbers of patients.⁴ The Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results study⁵ that used a glucagon-like receptor agonist in a similar population also showed renal benefit, although specific details of the renal benefit are not yet available. In the period between the positive trials of RAAS blockade and the recent trials of incretinbased therapies, there have been few phase two-four trials that ²¹Co-first authors. ²²GKHS Working Group Co-chairs. Table 1 | Recent therapeutic trials for chronic kidney disease⁶ | Indication | Therapy | Status/results | Trial registration # | |----------------------|---|--|----------------------------| | Diabetic nephropathy | Aldosterone receptor antagonist | Phase 2 study completed | NCT02517320 | | | Aliskiren (ALTITUDE) | Phase 3 study terminated due to harm ¹⁶ | NCT00549757 | | | Anticonnective tissue growth factor | Phase 2 study terminated due to | NCT00913393 | | | antibody FG-3019 | suboptimal design | | | | Anti-transforming growth factor- eta | Phase 2 study terminated due to | NCT01113801 | | | kinase antibody (LY2382770) | lack of efficacy | | | | Bardoxolone methyl: TSUBAKI Study, BEACON | Phase 2 study recruiting | NCT02316821 | | | | Phase 3 study terminated due | NCT01351675 | | | | to safety concerns ¹⁷ | | | | C-C chemokine receptor type 2 antagonism | Phase 2 study completed ¹⁸ | NCT01447147 | | | Dapagliflozin | Phase 4 study recruiting | NCT02682563 | | | Endothelin-A antagonist Atrasentan | Phase 3 study currently recruiting | NCT01858532 | | | Exenatide | Phase 4 study active but not recruiting | NCT02690883 | | | Mineralocorticoid receptor antagonist/ | Phase 2 study completed ¹⁹ | NCT01874431 | | | finerenone | Phase 3 study recruiting | NCT02540993 | | | Nox1/4 inhibitor (Oral GKT137831) | Phase 2 study completed: negative results | NCT02010242 | | | Phosphodiesterase 5 inhibitor | Phase 2 study completed ²⁰ | NCT03680778 | | | Pirfenidone | Phase 3 study recruiting | NCT02689778 | | IaA nanhranathy | Pyridorin | Phase 3 study terminated due to lack of funding Phase 4 study recruiting | NCT02156843 | | IgA nephropathy | Acthar
Blisibimod | Phase 2 and 3 study active but not recruiting | NCT02382523
NCT02062684 | | | Bortezomib | Phase 4 study recruiting | NCT02062664
NCT01103778 | | | Combination immunosuppression (STOP IgA) | Phase 3 study completed: negative results | NCT01103778
NCT00554502 | | | Combination initialiosuppression (510r igA) | and a sign of harm ²¹ | NC100334302 | | | Fostamatinib | Phase 2 study recruiting | NCT02112838 | | | Hydroxychloroquine Sulfate | Phase 2 study recruiting Phase 4 study recruiting | NCT02772838
NCT02765594 | | | Nefecon | Phase 2 study completed: reported | NCT01738035 | | | Neiceon | positive outcomes | 1101730033 | | | Rituximab | Phase 4 study recruiting | NCT02571842 | | | Rituximab | Phase 4 study completed | NCT02371012
NCT00498368 | | | Steroids in IgA nephropathy (TESTING) | Study active but not recruiting, modified | NCT01560052 | | | 3 ip ip i | due to a sign of harm | | | Proteinuric CKD | Curcumin | Phase 3 study completed: results not reported | NCT01831193 | | | LCZ696 (UK HARP-III) | Study active but not recruiting | ISRCTN11958993 | | Adult PKD | Metformin | Phase 2 study recruiting | NCT02903511 | | | Octreotide LAR (ALADIN 2) | Phase 3 study active but not recruiting | NCT01377246 | | | Octreotide LAR (ALADIN) | Phase 3 study competed ²² | NCT00309283 | | | Pioglitazone | Phase 2 study recruiting | NCT02697617 | | | Sirolimus | Phase 2 and3 study terminated due | NCT01223755 | | | | to safety and efficacy concerns ²³ | | | | Tolvaptan | Phase 3 study active but not recruiting in | NCT02160145 | | | | patients with CKD stage 2–4 | | | | Tolvaptan (TEMPO 3/4) | Phase 3 study completed ^{24,25} | NCT00428948 | | | Water loading | Observational study completed: results | NCT01348035 | | | | not yet reported | | | Lupus nephritis | Abatacept | Phase 2 study completed: negative results ²⁶ | NCT00774852 | | | | Phase 3 study active but not recruiting | NCT01714817 | | | Acthar | Phase 4 study recruiting | NCT02226341 | | | Anifrolumab | Phase 2 study recruiting | NCT02547922 | | | Atacicept | Phase 2 and 3 study terminated due | NCT00573157 | | | | to safety issues | | | | Belimumab | Phase 3 study recruiting | NCT01639339 | | | BI-655064 | Phase 2 study recruiting | NCT02770170 | | | Blisibimod | Phase 3 study recruiting | NCT02514967 | | | Etanercept | Phase 2 study terminated: perceived | NCT00447265 | | | | risk-benefit ratio for individuals with early | | | | 10 | active RA | NCT0025025 | | | Infliximab | Phase 2 and 3 study terminated due | NCT00368264 | | | Object | to failure to recruit | NCTOSESSES | | | Obinutuzumab | Phase 2 study recruiting | NCT02550652 | | | Rituximab | Phase 3 study completed: negative results ²⁷ | NCT00282347 | | | | Phase 3 study recruiting (as a single | NCT01673295 | | | | agent + standard of care) | NCT022C0024 | | | | Phase 2 study recruiting (in combination | NCT02260934 | | | | with Belimumab) | NCTO1772C1C | | | | | NCT01773616 | (Continued on next page) ## Download English Version: ## https://daneshyari.com/en/article/5689963 Download Persian Version: https://daneshyari.com/article/5689963 <u>Daneshyari.com</u>