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a b s t r a c t

A strategy for global sensitivity analysis of a multi-parameter ecological model was developed and used
for the hydrodynamic-ecological model (DYRESMeCAEDYM, DYnamic REservoir Simulation Model-
Computational Aquatic Ecosystem Dynamics Model) applied to Lake Kinneret (Israel). Two different
methods of sensitivity analysis, RPART (Recursive Partitioning And Regression Trees) and GLM (General
Linear Model) were applied in order to screen a subset of significant parameters. All the parameters
which were found significant by at least one of these methods were entered as input to a GBM
(Generalized Boosted Modeling) analysis in order to provide a quantitative measure of the sensitivity of
the model variables to these parameters. Although the GBM is a general and powerful machine learning
algorithm, it has substantial computational costs in both storage requirements and CPU time. Employing
the screening stage reduces this cost. The results of the analysis highlighted the role of particulate
organic material in the lake ecosystem and its impact on the over all lake nutrient budget. The GBM
analysis established, for example, that parameters such as particulate organic material diameter and
density were particularly important to the model outcomes. The results were further explored by
lumping together output variables that are associated with sub-components of the ecosystem. The
variable lumping approach suggested that the phytoplankton group is most sensitive to parameters
associated with the dominant phytoplankton group, dinoflagellates, and with nanoplankton (Chlor-
ophyta), supporting the view of Lake Kinneret as a bottomeup system. The study demonstrates the
effectiveness of such procedures for extracting useful information for model calibration and guiding
further data collection.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Computer models of ecosystems are increasingly used in order
to predict possible impacts of policy measures prior to their
implementation and to achieve a better understanding of these
ecosystems (Ford, 1999). Success of ecosystem models is generally
examined through comparisons to time-series of field data.
However, when such comparisons are conducted, model predic-
tions do not always match the observed data. The discrepancies can
be attributed to various sources of error, such as estimation error of
the initial conditions, sampling errors in the field data and errors in
the model equations and parameters (Loehle, 1997). The consider-
able complexity of these models often requires the inclusion of
a large number of parameters, many of whose values are uncertain.

Uncertainty in parameter values is attributed to the complexity
of natural ecosystems and to the measures by which the parame-
ters are obtained. Parameter values can be obtained from empirical
observations or experiments, where the degree of uncertainty
around the estimated value can be assessed and even reduced in
most cases (Fieberg and Jenkins, 2005). If observations or experi-
ments are not available, parameters can be derived from expert
opinion or other models, yet suchmeans are typically characterized
by large uncertainty (Ray and Burgman, 2006). Moreover, models
have various sensitivities to the different parameters. A parameter
that the model is sensitive to is one that minor changes in its value
would result in major changes in model output or inference. When
high uncertainty in the value of a parameter coincides with high
sensitivity of the model to that parameter, the reliability of model
predictions may be very low (Bar Massada and Carmel, 2008).

In order to reduce the uncertainty associated with parameter
values, considerable effort must typically be invested by the
modeler. A prioritized list of influential parameters may be
compiled. Such a list can be used to determine the parameters in
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which the reduction of uncertainty would result in the greatest
increase in model accuracy and thus help prescribe resource allo-
cation into further research (Thornton et al., 1979).

Sensitivity analysis (SA) may be used to qualitatively or quan-
titatively apportion the variation of the model outputs to different
sources of variation in model components such as parameters, sub-
models and forcing data (Brugnach, 2005; Frey et al., 2004; Saltelli
et al., 2000, 2008; Helton et al., 2006). Although SA is an optional
element within the modeling process (Jorgensen, 1994), several
modeling guidelines such as the EPA guidance document (2003) or
the European Commission Impact assessment guidelines (2005)
prescribe sensitivity analysis as a tool to ensure the modeling
quality. SA is therefore considered an important stage in develop-
ment of ecological models (Ravalico et al., 2005; Saltelli et al., 2000;
de Young et al., 2004). In addition, SA can also have ecological
importance by identifying the governing parameters and processes
in a certain ecological system or even to improve model formula-
tions (Thornton et al., 1979; Cariboni et al., 2007). For example,
Cossarini and Solidoro (2008) found that the most relevant
parameters in the trophdynamic model of the Gulf of Trieste
(Northern Adriatic Sea, Italy) are those related to the growth
formulation of the phytoplankton group, the decay rate of partic-
ulate organic phosphorus and the mortality rate of bacteria.
Cariboni et al. (2007) applied a SA to a pelagic fish population
model, revealing that the total order sensitivity index for larvaewas
ten times more than the total order of sensitivity index estimated
for adult fish. These results indicate that from the fishing regulatory
point of view the main effort has to be put into developing strategy
for protecting young individuals.

Sensitivity analysis of model parameters is carried out by
changing them and observing the corresponding response in the
output variables. The change in the parameters is chosen on the
basis of our knowledge of their acceptable ranges. In local SA,
parameter values are changed one at a time, while fixing all other
parameter values (Bar Massada and Carmel, 2008). Global SA is
a group of techniques that alter a subset or all the parameters
simultaneously in a given model simulation (Helton et al., 2006;
Helton and Davis, 2003; Fieberg and Jenkins, 2005; Ginot et al.,
2006; Chu et al., 2007; Marino et al., 2008). Global SA should
probably be preferred in most situations, since (1) it accounts for
the effects of interactions between different parameters, and (2) as
ecological models are rarely linear, global SA does not assume
a linear relationship between the parameters and state variables
(Saltelli et al., 2000; Cariboni et al., 2007). Moreover, one may be
interested in the relative impact of a group of parameters, a sub-
model or a process, which local SA is incapable of addressing.

A known shortcoming of global SA is the heavy computational
demands (Hamby, 1994; Ascough et al., 2005; Moore and Ray,
1999). These become particularly limiting in models with tens or
hundreds of parameters. Such complex models are ubiquitous in
ecology, and it is not uncommon to find ecological models with 200
parameters or more. In such models, a single simulation run may
last hours, even on powerful computers, and the number of simu-
lations required for a significant global SA may be prohibitively
large. SA of such models becomes an intricate and complex task
which needs to be well thought out. Furthermore, sensitivity
analysis outputs do not always provide the modeler with infor-
mation on the effect of small changes (e.g. when the parameter is
changed within its allowable domain) or how exactly several
parameters interact with each other to effect a certain output
variable.

Various criteria should therefore be considered when selecting
an appropriate SA method (Ravalico et al., 2005; Ascough et al.,
2005). The key criteria are: (1) the computational cost associated
with an extensive SA (Hamby, 1994; Ascough et al., 2005; Moore

and Ray, 1999), (2) the ability of the method to account for inter-
actions between parameters, (3) the ability of the method to
account for non-linearities and non-monotonicity often present in
ecological models, (4) the input data required for the analysis, for
example in many cases knowledge of parameter probability
distributions is required but this knowledge is not always available,
and (5) the ability to understand and use the output of the SA.

In this paper, a new global SA approach, applicable to multi-
parameter models, was developed in order to satisfy the above-
mentioned criteria. The approach combines several analysis
methods. In the first step, two separate and independent analyses
methods were performed: (1) based on general linear models
(GLM) with random effects and with correction for multiple
comparisons (i.e. a least squares method for fitting models that
involves continuous and discrete variables); and (2) based on
recursive partitioning and regression trees (RPART) which builds
classification or regression models of a very general structure using
a two stage procedure; the resulting models can be represented as
binary trees. The outcomes of these two methods (i.e. the most
sensitive parameters selected based on these two methods) were
combined to generate a subset of parameters (for each output
variable) to which the model was most sensitive. In the second step
a more intricate quantitative method, a generalized boosted
regression model (GBM, Friedman, 2001, 2002), was applied to the
subset of parameters defined in the first stage. The GBM is
a general, automated, data-adaptive modeling algorithm that can
estimate the non-linear relationship between a variable of interest
and a large number of covariates. The impact of the selected
parameters on the output variables was estimated and the esti-
mates were used to construct, for each one of the output variables,
a final ordered list of parameters with a quantitative measure of the
sensitivity of the output variables to the parameters.

The method was applied to a complex hydrodynamic-ecological
model, DYnamic REservoir Simulation Model-Computational
Aquatic Ecosystem Dynamics Model, (DYRESMeCAEDYM and
DYCD hereafter) used to study Lake Kinneret (Israel). In previously
studies of DYCD performance, the seasonal variability and vertical
variation in temperature, oxygen, and nutrients were successfully
captured (Bruce et al., 2006; Gal et al., 2009), however, these
studies also highlighted that much uncertainty exists in predicting
nutrienteplanktonic interactions that are highly non-linear and are
less understood. Therefore the motivation of this analysis was
centered on gaining deeper insights into these non-linear interac-
tions. Although inference is not typically mentioned as a specific
goal of sensitivity analyses, in this particular application the SA
results were also used to derive insights into themodel and into the
properties of the actual ecosystem of Lake Kinneret.

2. Methods

2.1. DYRESMeCAEDYM (DYCD)

The 1-D hydrodynamic-ecological model, DYCD, developed at the Centre for
Water Research, University of Western Australia (Hamilton, 1999; Imberger and
Patterson, 1981) simulates the hydrodynamic and biogeochemical dynamics for
aquatic ecosystems. DYRESM uses a Lagrangian approach for simulation of the
hydrodynamics of aquatic ecosystems (Imberger and Patterson, 1981, 1989). Based
on inflows, withdrawals, and meteorological conditions, it calculates the water level
and changes to water temperature, salinity and stratification dynamics over time.
The water column is represented by set of layers whose thickness ranges between
0.65m and 2m. DYRESM has been applied to lakes of varying types (Hamilton,1999;
Horn et al., 2001) including to Lake Kinneret (Gal et al., 2003).

CAEDYM dynamically couples with DYRESM to simulate nutrient cycling and
various plankton groups and is the focus of the present SA analysis. CAEDYM
consists of a series of partial differential equations to simulate time-varying
concentrations of biogeochemical variables accounting for processes such as
primary production, secondary production, nutrient cycling, oxygen dynamics and
sediment-water interactions (Hipsey and Hamilton, 2008). Various configurations of
the model have previously been validated in reservoirs, lakes (Romero et al., 2004;
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