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a b s t r a c t

Quantifying rainfall at spatial and temporal scales in regions where meteorological stations are scarce is
important for agriculture, natural resource management and land-atmosphere interactions science. We
describe a new approach to reconstruct daily rainfall from rain gauge data and the normalized difference
vegetation index (NDVI) based on the fact that both signals are periodic and proportional. The procedure
combines the Fourier Transform (FT) and the Wavelet Transform (WT). FT was used to estimate the lag
time between rainfall and the vegetation response. Subsequently, third level decompositions of both
signals with WT were used for the reconstruction process, determined by the entropy difference
between levels and R2. The low-frequency NDVI data signal, to which the high frequency signal (noise)
extracted from the rainfall data was added, was the base for the reconstruction. The reconstructed and
the measured rainfall showed similar entropy levels and better determination coefficients (>0.81) than
the estimates with conventional statistical relations reported in the literature where this level of
precision is only found for comparisons at the seasonal levels. Cross-validation resulted in �10% entropy
differences, compared to more than 45% obtained for the standard method when the NDVI was used to
estimate the rainfall in the same pixel where the weather station was located. This methodology based
on high resolution NDVI fields and data from a limited number of meteorological stations improves
spatial reconstruction of rainfall.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Rainfall is a major driving force in the water cycle and the most
important factor in promoting vegetation growth in rain-fed agri-
culture and natural grasslands and forests of the world. Accurate
rainfall data with sufficient spatial resolution are of key importance
in assessing basin scale hydrology but in many developing coun-
tries, adequate gauged data is seldom available.

Remote sensing can provide spatial precipitation patterns.
Ground radar systems can also provide spatial precipitation infor-
mation but validation of its data products is a major challenge for
general hydrologic applications (Krajewski and Smith, 2002).
Ground radar systems also have a limited range and are generally
aimed at monitoring extreme events over limited time spans,
making their use less suitable for long term assessments. Satellite
remote sensing is a better source of spatial precipitation data,
which are generally readily available over longer periods and large

areas. Many different algorithms and types of sensors aboard
a variety of satellites exist. Adler et al. (2001) provide an extensive
overview and inter-compare 25 satellite based products to four
model based, and to two climatological products. As many of these
products have either a poor spatial resolution (w100 km) or a poor
temporal resolution (w1 month), there is a need to develop
a robust downscaling methodology for precipitation.

Many studies have used the intuitive correlation between
rainfall and plant biomass, particularly in arid and semi-arid
environments, to fill in this rainfall data gap (see Richard and
Poccard, 1998; Kawabata et al., 2001; Lotsch et al., 2003;
Nicholson and Farrar, 1994; Farrar et al., 1994; Nicholson et al.,
1990; Eklundh, 1998; Martiny et al., 2006; Chamaille-Jammes
et al., 2006; Dinku et al., 2008). However, the vegetation response
to precipitation is highly variable in space, mainly due to soil and
other influencing factors. There is also a delayed response in time,
termed lag time (Farrar et al., 1994), which is defined as the time
required for a volume of water equal to the annual mean of
exchangeable soil moisture to be depleted by the combined
processes of runoff and evapotranspiration. This lag time varies for
different agro-ecologies; in semi-arid regions it is usually of the
order of 2e3months (Nicholson and Lare,1990). This process is also
described by Entekhabi et al. (1996) and Brunsell and Young (2008),
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who stated that the surface affects the role of soil moisture by
acting as a low-pass filter to the high frequency rainfall signal into
a near immediate moisture effect and then slowly into a vegetation
effect.

Most studies have sought statistical relationships between
rainfall and NDVI but they seldom go beyond simple correlation
analysis (Brunsell and Young, 2008). A linear relationship between
rainfall and NDVI has been reported for areas with precipitation
ranging from 200 to 1200 mm per year (Nicholson et al., 1996). In
other areas the upper limit is attained at lower annual precipita-
tions (Martiny et al., 2006). Above the upper threshold, the index
“saturates” and NDVI increases only very slowly with increasing
rainfall or becomes constant. Statistical relationships to estimate
rainfall seem to be meaningless when applied to dekadal or daily
data, especially when autocorrelations are removed (Eklundh,
1998). In spite of the lack of accuracy of the statistical relation-
ship between these two signals, this is the standard method of
using satellite information to estimate rainfall in arid and semi-arid
regions. Thus, current procedures for estimating rainfall from NDVI
are of limited use in applications in modeling agricultural
production and land-atmosphere interactions studies, where dek-
adal or daily rainfall is required.

The present study aimed at 1) developing a procedure for
generating daily precipitation data, using reconstructions that
combine wavelet-filtered signals containing the low-frequency lag-
corrected vegetation greening signal, extracted from NDVI time
series, and the high frequency portion of the daily rainfall data; and,
2) test whether daily rainfall events can be approximated for
neighboring areas where only NDVI data is available.

2. Materials and methods

2.1. Study area

The Altiplano is a high Andean plateau centered around Lake Titicaca in the
Peruvian-Bolivian border. The plateau rises from the lake level at 3800meters (m) to
over 4500 m altitude. The rainfall varies from less than 400e600 mm yr�1; average
minimum temperature drops to �10 �C, droughts can last up to 150 d yr�1, while
frost-free days are around 150. The dominant vegetation is natural grasslands with
cultivated areas mainly near the lake (Quiroz et al., 2003).

Convective activity and precipitation in the Altiplano occur almost exclusively
during the austral summer and are associated with the seasonal expansion of the
upper-air easterlies and related near-surface moisture influx from continental
lowlands to the east. Precipitation from the west is rare because Pacific moisture is
trapped vertically by large-scale subsidence and a stable low-level inversion at
900 hPa, and laterally by the coastal escarpment (Vuille and Keimig, 2004).

2.2. Climate data

Rain-gauge daily data from 10 weather stations (Fig. 1) were obtained from the
Peruvian national meteorology and hydrology service (SENAMHI). Data for the
period from January 1st 1999 through December 31st 2002 was included in the
analysis. The raw data (Fig. 2) was checked for inconsistency and outliers. The
analysis was conducted for the ten sites where the weather stations were located.

2.3. NDVI data

A dataset containing 180 10-day (dekad) composite NDVI images derived from
the SPOT-4 and SPOT-5 VEGETATION instruments was used, spanning the period
January 1999eDecember 2003. The VGT1 sensor aboard the SPOT-4 satellite
provided the data for the January 1999eJanuary 2003 period whereas the remaining
period was covered with data from the VGT2 sensor aboard the SPOT-5 satellite.
Both sensors have the same spectral and spatial resolution. The red spectral band
(0.61e0.68 mm) and the near-infrared (NIR) spectral band (0.78e0.89 mm) were
used to calculate the NDVI (NIR � RED/NIR þ RED) and the imagery had a spatial
resolution of 1 km. The synthesized preprocessed S10 NDVI product, which is
a geometrically and radiometrically corrected 10-day composite image (Immerzeel
et al., 2005), was used. The periods were defined according to the civil calendar:
from the 1st day to the 10th; from the 11th to the 20th; and from the 21st to the end
of each month.

The GPS coordinates of the weather stations were co-registered with the NDVI
imagery data corresponding to each site. Therefore, for each location a vector

containing 180 NDVI values, one for each civil calendar dekad, was extracted and
used in the analysis. The dekadal NDVI value was repeated for each day within the
respective dekad to match the daily observations in the rainfall data, generating
1826 NDVI daily values for the entire period. Given the difference in magnitude of
the two signals, and for visual comparison purposes, the NDVI values were multi-
plied by the ratio of the mean value of both signals to generate magnitudes
comparable to those registered for rainfall (Yarlequé, 2009).

2.4. Data pre-processing

2.4.1. Fourier analysis
Fourier or harmonic analysis is a mathematical technique used to decompose

a complex static signal into a series of individual cosinewaves, each characterized by
a specific amplitude and phase angle. Several authors have successfully applied
Fourier analysis in analyzing time series of NDVI imagery (e.g. Azzali and Menenti,
2000; Roerink and Menenti, 2000; Jakubauskas et al., 2001, 2002; Moody and
Johnson, 2001; Immerzeel et al., 2005).

A stationary process can be represented by a series of harmonic functions,
whose frequencies are multiples of a base frequency. This series of harmonic func-
tions is called a Fourier series. Assuming that the process can be described by
a function S, the usual form of the Fourier series is (Pipes and Harvill, 1971):

SðtÞ ¼ A0

2
þ

Xn¼N

n¼1

AncosðnutÞ þ
Xn¼N

n¼1

BnsinðnutÞ (1)

Where t ¼ time and A and B are the Fourier coefficients.
The constant term in Eq. (1) is always equal to the mean value of the S(t), (the

mean NDVI value in a series of satellite imagery) and u ¼ 2pf0, where f0 is the base
frequency. Eq. (1) can be written in different forms, following basic mathematical
laws (Pipes and Harvill, 1971). In this research it was decided to transfer Eq. (1) to
a form that only contains cosine terms, which facilitates interpretation. Eq. (1) can
also be written as

SðtÞ ¼ A0

2
þ

Xn¼N

n¼1

Cncosðnut� qnÞ (2)

Eq. (2) now has a convenient form with only cosine terms. The signal is
decomposed in a series of cosine terms, each with its own amplitude (Cn) and phase
angle (qn), and a constant term (A0/2). When a signal is described using Fourier
analysis the values for the coefficients Cn need to be found. An algorithm to recover
those coefficients from a discrete signal is the Fast Fourier Transform (FFT). In this
case we analyzed a signal comprised of 1826 discrete NDVI daily values to estimate
the Fourier coefficients Cn. The result of the FFT is a complex vector, with a real part
containing the A coefficients and an imaginary part containing the B coefficients of
Eq. (1). The coefficients C of Eq. (2) can be derived from A and B by calculating the
length of the vector. There are a few limitations to the FFT related to the underlying
mathematics. Firstly, to correctly recover a signal from the Fourier transform of its
samples, the signal must be sampled with a frequency of at least twice its bandwidth
(Nyquist frequency). Secondly, the signal needs to be sufficiently static to permit the
analysis under the assumption that the wave is static (intrinsic assumption of the
FFT) which means that both amplitude and phase of the individual terms should not
vary significantly over time.

2.4.2. Determination of the lag time
The lag time between the onset of the rainy season and the greening of the

vegetation was assessed with the Fourier analysis. Both rainfall (SRain) and NDVI
(SNDVI) signals were reconstructed with the six first harmonic components (n ¼ 1 to
6 in Eq. (2)) of the Fourier series, with sizes N and M, respectively. By including six
harmonics in the simulation of rainfall and NDVI signals, most of the variance in the
original data is explained (Immerzeel et al., 2005). These smoothed Fourier trans-
form (SFT) signals were used to estimate the lag time between the two primary
signals. A new independent variable was generated through the simulation of the
SFT for different periods T (where T 3 Zþ). Out of all possible periods, T ¼ 15, 30, 91,
121, 182, and 365 d were used for the analysis. Partitions PT ¼ {0, T, 2T,., kT}, k 3 Zþ,
with respect to T and kT < N,M, were defined. Each partition divided both signals
(SRain and SNDVI) into several sub-intervals. These intervals were used to search for
the lags. Fig. 3 shows this concept with a sample of two sub-intervals; i and iþ 1. For
each sub-interval the time difference between the peaks of the signals SRain and
SNDVI were registered as the lag time for that sub-interval (lagi and lagiþ1). Then the
average lag time over the k-sub-intervals was obtained as:

LagðTÞ ¼ hlagki ¼ hDtki (3)

where the <> symbolizes average over k. Thus, we are estimating the lag time as
a new function Lag(T) (Eq. (3)), of the period T. The best coefficient of determination
was used for estimating the lag time for each meteorological station. Once the lag
time was considered, only four complete raining seasons spanning five years were
suitable for the analysis, comprising a data set of 1421 daily data pairs (NDVI,
rainfall)
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