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a b s t r a c t

We have demonstrated the benefits of sparse tensor calculus for finite-difference techniques that are
widely applied to Integrated Assessment (IA). Using a tensor toolbox for Matlab, we have developed
efficient code for progressing a system of state variables connected by a large variety of interaction types.
Using a small example of twenty variables across three countries, we demonstrate how the tensor
formalism allows not only for compact and fast scenario modelling, but also for straightforward
implementation of sensitivity and Monte-Carlo analyses, as well as Structural Decomposition Analysis. In
particular, we show how sparse tensor code can be exploited in order to search for potentially important,
but yet unknown relationships in the interaction network between all variables.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There is a wealth of approaches to modelling the interactions
between human activities and the environment. Given that such
models transcend the traditional disciplines, scientific activity has
over the past years banded together under the label Integrated
Assessment (IA). There now exists a number of IA programs around
the world, large-scale with respect to the model itself, but also with
respect to the size of team and budget. Dowlatabadi (1995) pres-
ents a typology of approaches, listing techniques such as general
equilibrium, Linear Programming, probabilistic models, and deci-
sion trees. In many cases, IA models are an assembly of coupled
sub-modules that each look after a particular aspect of the entire
model (for instance see Schaldach et al., 2011). Schaldach and Priess
(2008) provide an overview of integrated land system models.

This article is concerned with evaluating the performance and
advantages of sparse tensor algebra for Integrated Assessment
models of the kind that (Ha-Duong, 1997) describes as “pushed by
the past”. (Ha-Duong, 1997) (p. 2) defines these as “[models] that
treated in the framework of differential equations or finite difference
equations, [.]where the flow of the calculation follows the natural
time: Given the state of the system at date 0, state at date 1 is

computed first, then date 2 is examined, recursively up to date T”. In
IA, these finite-difference techniques are often used for the climate
and air pollution modules of large coupled models (see for example
(McPherson et al., 2003) and (Valverde, 2005)). In this work, we
evaluate the mechanism of pushing, or progressing system state
variables over time, using a finite-difference formulation controlled
by a multi-order sparse progression tensor. This tensor represents
the linearization of various non-linear functions describing con-
necting pairs of variables into a cause-and-effect relationship.

Braddock et al. (1995) and Zapert et al. (1998) use a second order
matrix expression in order to analyse stochasticity in the IMAGE
model. They use a vector state variable X(t) incorporating 159
variables of the model, a linear interaction matrix A, a vector
function N encompassing non-linear relationships, and a constant-
coefficient term U containing the exogenous forcing terms. Our
work follows this general set-up. Also similar to this work, these
authors linearise the non-linear terms by constructing the gradient
matrix VN. The main aspect in (Braddock et al., 1995) is that the
authors subject parts of the interaction matrix A to random
perturbations in order to examine the stochastic properties of the
system.

Whilst stochasticity can also easily be evaluated using sparse
tensor algebra, we do not explore this issue in this article, since
(Braddock et al., 1995) already have provided a comprehensive
analysis. Instead we concentrate on the following aspects: we
demonstrate how sparse tensor algebra can a) lead to an
extremely compact computer code, b) enable efficient sensitivity
and structural decomposition analysis, and c) provide a means of
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exploring the potential effects of yet unknown relationships
between variables, by introducing spurious coefficients into the
tensor.

In the following, we will introduce the tensor formulation of
some finite-difference schemes in Section 2, provide a small-scale
and simplified, but realistic example in Section 3, and conclude in
Section 4.

2. Formulating causal relationships in tensor finite-
difference notation

2.1. Finite differences

In essence, the finite difference method (Rübenkönig, 2006) is
a numeric method that is used to solve partial differential equations
by approximating derivatives as differences, that is

f 0ðxÞ ¼ lim
Dx/0

f ðxþ DxÞ � f ðxÞ
Dx

z
f ðxþ DxÞ � f ðxÞ

Dx
if Dx is “small”:

(1)

For example, approximating the differential equation _y¼ vy=vt ¼ Cy
leads to the finite-difference equation

yðt þ DtÞ ¼ yðtÞ þ yðtÞCDt: (2)

Starting with a known y(t0) and a rate of change C, the function y
can be progressed over time using Eq. (2). The well-known
analytical solution to this equation is the exponential function
y(t) ¼ y(t0)eCt. y changes exponentially at a given rate C.

Approximating the differential equation _y=y ¼ Cð _x=xÞ leads to
the finite-difference equation

yðt þ DtÞ ¼ yðtÞ þ yðtÞC xðt þ DtÞ � xðtÞ
xðtÞ : (3)

The solution to this equation is the power function y(t) ¼ (y(t0)/
x(t0)C)x(t)C. If x changes 1%, y changes C%. C is called the x -elasticity
of y. Table 1 provides an overview of some basic differential
equations and their finite-difference forms.

2.2. Extensions: relative change variants, temporal and spatial lags

There are a number of modifications and special cases of the
finite-difference equations in Table 1. First, the relative change
term [x(t þ Dt) � x(t)]/x(t) references the change in x between
times t and t þ Dt to the state of x at time t. In analogy to this
Laspeyres form, it is equally possible to use Marshall-Edgeworth
and Paasche variants of indexation (Lenzen, 2006) as in Eqs. (4)
and (5), respectively .

½xðt þ DtÞ � xðtÞ�=0:5½xðt þ DtÞ þ xðtÞ� (4)

½xðt þ DtÞ � xðtÞ�=xðt þ DtÞ (5)

In general,

Dx
x

ðt þ DtÞ ¼ xðt þ DtÞ � xðtÞ
axðt þ DtÞ þ ð1� aÞxðtÞ; with 0 � a � 1: (6)

The same variants apply to the term _y=y in Table 1. Further, y(t)
may depend on the state, or the change in state of x at a time t � d
prior to t. In other words, there may be a temporal delay, or lag, of
size d in the effect of x, or a change in x, on y. Finite-difference
equations can readily be modified to accommodate such lags by
setting

Dx
x
ðtþDt�dÞ ¼ xðtþDt�dÞ� xðt�dÞ

axðtþDt�dÞþ ð1�aÞxðt�dÞ; with 0� a� 1:

(7)

In order for the iterations to work, the minimum delay must
be dmin ¼ Dt. A well-known example for temporal lags is the
causal chain between greenhouse gas emissions, atmospheric
concentration, and global temperature change, where response
functions describe delays of more than 100 years (Meira and
Miguez, 2000).

A special case of a temporal lag is givenwhen a system of causal
variables contains loops. Assume for example a causal network

where x influences y. which in turn influences z which in
turn influences q which then feeds back onto y. In the finite
difference approach the progression to y(t þ Dt) can be evaluated
from x(t þ Dt), but not from q(t þ Dt),, because this quantity is not
yet known at the time that x(tþ Dt) is known. Such a feedback loop
can only be evaluated with q lagging one time step behind y.

Finally, in spatially explicit scenario modelling, a variable may
influence itself across space. In other words, the state, or change in
state, of a variable x(t,p) at point pmay have a direct causal effect on
the state, or change in state, of x(t,p0) at point p0. Relationships of
such kind are called spatial autocorrelation, or spatial lags, and
finite differences can be written for example as

xðt þ Dt;p0Þ � xðt;p0Þ ¼ C½xðt; pÞ � xðt � Dt; pÞ�: (8)

Note that a temporal lag of one time step is once again
unavoidable. An example for a spatially autocorrelated variable is
the number of threatened species in a particular country, which is
dependent on the number of threatened species in neighbouring
countries (Pandit and Laband, 2007). The reason for this autocor-
relation is that species migrate, and hence the degradation or
destruction of habitat has cross-border effects.

Table 1
Overview of finite-difference formulations. Differential equations can be read by linking row trailers and column headers at the “.” sign. Each intersection provides row-wise:
a) a label for the relationship, b) a finite-difference expression for Dy ¼ y(t þ Dt) � y(t), c) the analytical solution for y(t), and d) a description of the causal relationship
determining y.

.C .Ct .C _x .C
_x
x

_y ¼ . Linear Quadratic Proportional Logarithmic
CDt CtDt C[x(t þ Dt) � x(t)] C[x(t þ Dt) � x(t)]/x(t)
Ct þ y(t0) Ct2 þ y(t0) C[x(t) � x(t0)] þ y(t0) Cln[x(t) � x(t0)] þ y(t0)
y changes linearly over time at
a constant rate C

y changes over time at a linearly
changing rate Ct

y changes proportional to x y changes proportional to
relative changes in x

_y
y
¼ . Malthusian Gaussian Exponential Elastic

y(t)CDt y(t)CtDt y(t)C[x(t þ Dt) � x(t)] y(t)C[x(t þ Dt) � x(t)]/x(t)
y(t0)eCt yðt0Þ eCt2=2 yðt0ÞeC½xðtÞ�xðt0Þ� y(t0)/x(t0)Cx(t)C

y changes exponentially over
time at a constant rate C

y changes exponentially over time
at a linearly changing rate Ct

y changes relatively proportional to x y changes relatively proportional
to relative changes in x
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