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a b s t r a c t

The assessment of uncertainty is a major challenge in geomorphometry. Methods to quantify uncertainty
in digital elevation models (DEM) are needed to assess and report derivatives such as drainage basins.
While Monte-Carlo (MC) techniques have been developed and employed to assess the variability of
second-order derivatives of DEMs, their application requires explicit error modeling and numerous
simulations to reliably calculate error bounds. Here, we develop an analytical model to quantify and
visualize uncertainty in drainage basin delineation in DEMs. The model is based on the assumption that
multiple flow directions (MFD) represent a discrete probability distribution of non-diverging flow
networks. The Shannon Index quantifies the uncertainty of each cell to drain into a specific drainage
basin outlet. In addition, error bounds for drainage areas can be derived. An application of the model
shows that it identifies areas in a DEM where drainage basin delineation is highly uncertain owing to
flow dispersion on convex landforms such as alluvial fans. The model allows for a quantitative assess-
ment of the magnitudes of expected drainage area variability and delivers constraints for observed
volatile hydrological behavior in a palaeoenvironmental record of lake level change. Since the model
cannot account for all uncertainties in drainage basin delineation we conclude that a joint application
with MC techniques is promising for an efficient and comprehensive error assessment in the future.

� 2012 Elsevier Ltd. All rights reserved.

Software availability

Program title: TopoToolbox
Developer: Wolfgang Schwanghart
First available: 2009
Source language: MATLAB
Version: 1.06
Requirements: MATLAB R2011b, Image Processing Toolbox
Availability: TopoToolbox is open source, available free of charge

and can be downloaded on http://physiogeo.unibas.ch/
topotoolbox/

1. Introduction

The assessment of uncertainty has been identified as one of the
main challenges for geomorphometry (Wood, 2009) that becomes
an increasingly pressing issue. Errors are inherent in digital

elevation models (DEM) and have a significant influence on the
reliability of products derived from them (Fisher, 1998; Fisher and
Tate, 2006; Hengl et al., 2010; Vaze et al., 2010). This is particu-
larly true for the new generation of DEMs that have been made
available with high spatial resolutions falling below one meter
since it remains largely unclear whether the high-resolution
equates to high accuracy (Temme et al., 2009).

DEM elevations differ from what we measure in the field.
Measurement devices such as remote sensors have limited accuracy
anddiscretization to a gridded representation requires interpolation
and generalization (Heritage et al., 2009). Moreover, DEM deriva-
tivesmaybe erroneousdue to theprecisionof calculation techniques
(Florinsky,1998; Raaflaub andCollins, 2006). High-resolution, LiDAR
DEMs contain new sources of uncertainty generated by the intricate
process offiltering vegetation or the obstruction of digitalflowpaths
by man-made landscape features such as bridges. In addition, high-
resolution DEMs capture more and more small-scale and possibly
short-lived geomorphological features such as channel bars. While
repeated retrieval of such DEMs enable the detailed assessment of
temporal development of topography they may limit the DEMs
applicability to pre- and post-survey situations.
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Uncertainty has been assessed using analytical error propagation
techniques or numerical Monte-Carlo approaches. While analytical
techniquesmay be employed to assess the accuracy of the initial data
and precision of a calculation technique, they are usually restricted
to local topographic variables such as slope and curvature. Uncer-
tainty in non-local topographic variables such as viewsheds or
specific catchment area, however, is far more difficult to assess
analytically (Fisher, 1998; Florinsky, 1998) and thus, Monte-Carlo
(MC) approaches are used to study error propagation (Oksanen
and Sarjakoski, 2005; Raaflaub and Collins, 2006; Temme et al.,
2009; Hengl et al., 2010). Such approaches, however, are computa-
tionally intensive to obtain stable error bounds (Hengl et al., 2010).

Here we introduce a new analytical model to quantify and
visualize uncertainty in drainage basin delineation that is based on
the assumption that multiple flow directions (MFD) represent
a discrete probability distribution of non-diverging flow networks.
The Shannon entropy is used as index to quantify the uncertainty.
Following a short introduction into this measure of uncertainty, we
present the governing equations to derive it fromDEMs, outline the
software implementation and then provide an example of fuzzy
drainage basin delineation for visualizing and interpreting the
hydrological contributing area of lake Ugii Nuur, Mongolia.

2. Shannon entropy

Understanding the influence of errors in DEMs on drainage
basin delineation requires a way to quantify flow path variability
through an index that captures uncertainty. An entropy-based
index derived from Shannon’s information theory (Shannon,
1948) has long been used in different disciplines as measure of
disorder, unpredictability and diversity. Most commonly, it is found
in ecological literature referred to as ‘Shannon Index’ orH of species
diversity (Spellerberg and Fedor, 2003; Beck and Schwanghart,
2010) where it describes the entropy of a community composed
of N species and is defined as the weighted mean of the quantity of
entropy associated with the single species:

H ¼ �
XN

i¼1

pi log pi (1)

where pi ˛ [0; 1] is the relative abundance of the ith species such

that
PN

i
pi ¼ 1. H is low if one species dominates the species

distribution and reaches a maximum if all species are present in
equal proportions pi (Fig. 1). Here, H may be considered as
a measure of uncertainty about the relative abundances of species.

In image analysis, entropy is a local and global statistical measure
for the randomness and texture of an image (Gonzalez et al., 2003).
Entropy is used in the context of terrain analysis as indicator for
terrain roughness (Franklin, 1987) and measure for the quality of
landform classes derived from fuzzy classifications (e.g.Wood,1996;
Burrough et al., 2000; Fisher et al., 2004). The Shannon Index can be
transferred to flow path variability in a way that it describes the
uncertainty of a location in theDEM to drain to a specific outlet.Most
locations are clearly associated with a specific outlet. However,
a deterministic allocation may be impossible for locations on
watersheds or landforms where diverging flow paths prevail.

3. Fuzzy watershed delineation

The derivation of fuzzy drainage basins from DEMs can be
written as a set of linear equations based on the MFD matrix M as
introduced by Schwanghart and Kuhn (2010). M is associated with
a DEMwith n cells linearly indexed from i ¼ 1, 2,., n.M has n rows
and columns and is sparsely populated. Non-zero entries in M in

row i and column j contain the proportion p(i, j) of water trans-
ferred from cell i to cells j in i’s Moore neighborhood in the DEM
(Schwanghart and Kuhn, 2010). The way the proportions are
calculated depends on the flow routing algorithms. The MFD
algorithm applied here, takes all lower neighbors of cell i and p(i, j)
is proportional to the slope between i and j (Freeman, 1991). In
a network model, a non-zero proportion refers to an edge between
node i to j.M is a stochastic matrix since values in each row add up
to unity if cell i has at least one downslope neighbor. Otherwise, the
sum along rows is zero. The maximum number of non-zero entries
in M in row i is eight. In this case, i refers to a topographic peak
draining to all of its eight neighbors.

Fuzzy watersheds are based on the assumption that the
proportions given in the MFD matrix describe the probability that
water is routed from node i and j (Fig. 2a). The single flow direction
(SFD) matrix may be regarded as the most probable realization or
expected network of very many possible, non-diverging flow
networks. Thus, other realizations of non-diverging flow networks
can be computed by random sampling each node’s edges with
probability p(i, j) given by the multiple flow direction matrix.

In a deterministic, non-diverging flow network cells are easily
identified that drain to a specific pour point (Figs. 2b and 3a). If we
define each sink cell in the DEM (each cell without downstream
neighbor) as pour point s, each cell i can be definitely assigned to
a single s by p(i, s)¼ 1 if it drains into s (Fig. 2b). Otherwise, p(i, s)¼ 0.
The set of cells is for which p(i, s) ¼ 1 form the drainage basin of s.

In contrast, the cells belonging to fuzzy drainage basins are
characterized by the probability p(i, s)˛ [0; 1] of draining into sink s
(Fig. 3b and c). Here, flow paths may lead from a cell i to more than
one sink s. The probability that i drains in s is the sum of proba-
bilities that the downstream successors j of i drain into s times the
probabilities that i drains into j. If interpreted deterministically, p(i,
s) would correspond to the areal fraction that a node contributes to
a certain outlet. This can be written as linear system of equations

pði; sÞ ¼
X

j

ðpðj; sÞ$pði; jÞÞ (2)

Together with the condition that the probability that s drains
into s is one

pðs; sÞ ¼ 1 (3)

Fig. 1. The Shannon Index H as a function of the probabilities (p1, p2) of two variables.
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