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a b s t r a c t

If a computer model is run many times with different inputs, the results obtained can often be used to
derive a computationally cheaper approximation, or surrogate model, of the original computer code.
Thereafter, the surrogate model can be employed to reduce the computational cost of a variance-based
sensitivity analysis (VBSA) of the model output. Here, we draw attention to a procedure in which an
adaptive sequential design is employed to derive surrogate models and estimate sensitivity indices for
different sub-groups of inputs. The results of such group-wise VBSAs are then used to select inputs for
a final VBSA. Our procedure is particularly useful when there is little prior knowledge about the response
surface and the aim is to explore both the global variability and local nonlinear features of the model
output. Our conclusions are based on computer experiments involving the process-based river basin
model INCA-N, in which outputs like the average annual riverine load of nitrogen can be regarded as
functions of 19 model parameters.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of variance-based sensitivity analysis (VBSA) is to
provide a better understanding of the output of complex computer
models (Saltelli et al., 2004). More specifically, the aim is to
apportion the total variability of the model output to the variability
or uncertainty of various inputs. Due to the rapid progress of
computer technologies, VBSA is increasingly utilized in many fields
of science. However, it is not unusual that the computational cost
becomes insurmountable, because such analyses may require
a very large number of model runs. This has prompted several
scientists to investigate whether the computational cost can be
reduced by performing the VBSA on a computationally cheaper
surrogate model of the original computer code. Li and co-workers
(2002, 2006) considered truncated high-dimensional model
representation (HDMR) expansions of the original model. Oakley
and O’Hagan (2004) used a Gaussian emulator, and Ratto et al.
(2006) employed state-dependent parameter modeling. Storlie
and Helton (2007) and Storlie et al. (2009) examined how
a variety of regression smoothers can facilitate VBSA. Busby (2009)
developed a sequential adaptive design of experiment to obtain
a Gaussian emulator using the least possible number of function
evaluation. Sudret (2008) proposed a substitute analytical form for
Sobol’ indices using generalized polynomial chaos expansions

(PCE), and could reduce the computational cost of the sensitivity
indices by estimating the PCE coefficients.

VBSA provides information about the sources of the total vari-
ability of the model output over the entire input domain. Our goal
was to investigate how VBSA based on surrogate models can be
integrated with techniques that give more detailed information
about the variability of the model output. In particular, we exam-
ined how we could perform a VBSA and at the same time identify
subregions of the input domainwhere the model output is strongly
nonlinear.

Our approach is based on a sequential adaptive design algorithm
that was developed to enable accurate prediction of the model
output at untried inputs even when the curvature of the model
output varies strongly over the input space (Shahsavani and
Grimvall, 2009). We used the river basin model INCA-N (Wade
et al., 2002) as a study object to illustrate how the mentioned
design algorithm can be combined with a simple grouping of the
model inputs to facilitate handling of relatively high-dimensional
inputs. Furthermore, we demonstrated how simple summaries of
the distribution of design points can provide information about
subregions with a strongly nonlinear response.

2. The INCA-N model

INCA-N is a semi-distributed, process-based deterministic
model of the flow of water and nitrogen through catchments
(Whitehead et al., 1998a,b; Wade et al., 2002). It simulates the key
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factors and processes that affect the amount of NO3 and NH4 stored
in the soil and groundwater systems, and it feeds the outputs from
these systems into a multi-reach river model. The inputs to the
INCA-N model represent natural (meteorological) forcing, anthro-
pogenic forcing (fertilization schemes), and a set of model param-
eters. The outputs comprise daily estimates of water flow and NO3
and NH4 concentrations in streamwater at discrete points along the
main channel of the river (Fig. 1). We focused on a derived output:
the average annual riverine load of inorganic nitrogen over a period
of seven years where the output at each time point is represented
by the product flow�(No3eNþNH4-n). Furthermore, we restricted
our analysis to an artificial model catchment consisting of a single
sub-basin covering 1 km2 of agricultural land. Meteorological
inputs, fertilization schemes, and model parameters were taken
from a case study of the Tweed river basin in Scotland and England.
The input parameters of the INCA-N model can be divided into
three major groups:

� Initial states of the river basin;
� Nitrogen transformation parameters that refer to the rates at
which nitrogen is transformed in the soil or via take up by
crops;

� Hydrogeological parameters that control the properties of water
in the soil.

Table 1 summarizes the dimension and range of those inputs in
our study.

3. Construction of surrogate models

Let a computer codemodel with inputs in a cuboidD ¼ fx; aj �
xj � bj; j ¼ 1;.; pg be analytically expressed by y ¼ f ðx1;.; xpÞ.
The construction of surrogate models of such functions was based
on our developed methodology (Shahsavani and Grimvall, 2009),
which includes two steps:

� sequential, adaptive selection of the design points at which the
investigated model is run;

� prediction of model outputs at untried inputs by local fitting of
quadratic polynomials to the model outputs already computed
in cautiously selected neighbourhoods of the query points.

The design algorithm started by taking the centre and corners of
input domain and centre points of p� 1 non-opposite faces of this
cuboid. Thereafter, the input domain D was successively split into
disjoint cuboids whose corners and centre point were incorporated
into the design. In each step, it was needed to determine which
cuboid had to be split into two halves, and along which axis the cut
had to be made. Thus, measures of nonlinearity or roughness of the

response in each of the current cuboids were computed to ensure
that the splitting was directed towards cuboids in which the
responsewas difficult to predict. Themeasure of nonlinearity of the
response surface in a cuboid D* was based on to the roughness
measure
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(Green and Silverman, 1994).
The measure of roughness assigned to a cuboid D* was deter-

mined by fitting a second order polynomial
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to design points inside, on, or close to the border of D* and then
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where V(D*) denotes the volume of D* and dj depicts the length of
the jth side of D*. Furthermore, the cuboid with the largest
roughness index was split along the axis for which

~SðjÞ ¼
���bbj���d2j

attained its maximum.
The above mentioned structure provided designs that were

space filling and comparatively dense in those parts of the input
domain where the response was more nonlinear, whereas other
parts of the input domain were more sparsely covered. In fact the
algorithm was designed so that it could distinguish a cuboid with
higher roughness in each step and then generate the design points
in this cuboid. It means that practically the cuboids with less
roughness measures have fewer design points. Hence, it can be
expected that the input domain is sparsely covered where the
relationship between input and output is almost flat.

Fig. 1. Structure of the process-based INCA-N model of the flow of nitrogen and water
through a river basin.

Table 1
Model parameters in the INCA-N model.

Group Variable name Unit Range

Initial conditions Surface flow m3/s [0, 0.01]a

Surface nitrate mgN/l [0, 10]
Surface ammonium mgN/l [0, 2]
Surface drainage volume m3 [105, 2� 107]a

Sub-surface flow m3/s [0,0.01]a

Sub-surface nitrate mgN/l [0,10]
Sub-surface ammonium mgN/l [0,2]
Sub-surface
drainage volume

m3 [105, 2� 107]a

Nitrogen
transformation
(rate)

Denitrification mol/day [0, 0.01]
Nitrogen fixation kgN/ha/day [0, 0.01]
Plant nitrate uptake mol/day [0, 0.05]
Maximum nitrate uptake kgN/ha/yr [80, 140]
Mineralization kgN/ha/day [0, 1]
Immobilization mol/day [0, 0.1]
Plant ammonium uptake mol/day [0, 0.05]

Hydrogeological
parameters

Soil moisture deficit mm [100, 170]
Soil water residence time day [0.5, 5]
Groundwater
residence time

day [10, 200]

Maximum soil
retention volume

m [0.1, 1]

a The range refers to an artificial study area consisting of 1 km2 of agricultural
land.
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