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a b s t r a c t

This paper focuses on the coupling between the high fidelity aerodynamic model for the flow field and

the modal analysis of a typical wing section to carry out flutter analysis. This coupled aeroelastic model is

implemented in one of the most widely used open source CFD codes called OpenFOAM. The model is de-

signed to calculate the structural displacement in the time domain based on the free vibration modes of

the structure by constructing the numerical model directly from the modal analysis. Essentially a second

order ordinary differential equation is solved for each mode as a function of the generalised coordinates.

A density based solver using central difference scheme of Kurganov and Tadmor is used to model the

flow field. Two main cases of transonic flow over NACA 64A010 are modelled for a forced pitching oscil-

lation airfoil and a self-sustained aerofoil respectively. The self-sustained two degrees of freedom case is

modelled for three different possibilities covering damped, neutral and divergent oscillations. Predicted

results show very good agreement with the numerical and experimental data available in the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Aeroelasticity is the science of studying the interaction between

three main forces namely: elastic, inertia and aerodynamics. There-

fore aeroelasticity is an interdisciplinary field combining: fluid me-

chanics, solid mechanics and structural dynamics. In general, the

interaction between these two or three areas is classified as aeroe-

lastic problems. Aeroelastic research started in the late 1920’s and

the subject matter has matured enormously over the years and

now there are many excellent texts on the subject [1–4]. Insuffi-

cient or inaccurate prediction of aeroelastic characteristics of air-

craft during the design process can lead to catastrophic incidents.

One of the most dangerous aeroelastic instabilities is, of course

flutter. It is a self-excited oscillation of elastic body in fluid stream.

This condition is usually defined by two important parameters

namely the flutter speed and the flutter frequency. Flutter speed

defines the speed beyond which the aircraft becomes unstable. It

means that if the aircraft flies at this speed it will have steady har-

monic oscillation of constant amplitude. This self-excited oscilla-

tion will have a frequency which is called the flutter frequency.

This point is the most critical point because if for any reason, free

stream velocity exceeds the flutter speed, the system will have

divergent oscillation and will eventually vibrate in a violent way
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which could lead to the destruction of the aircraft. The aeroelastic

phenomenon, flutter is caused by all three types of forces, namely

elastic, inertia and aerodynamics. The fluid flow instead of playing

its natural role to damp the structural vibration, it will feed the

system instead with more and more energy until divergent oscilla-

tion occurs. The complexity of flutter analysis arises from the fact

that flutter involves very strong coupling between fluid mechanics

and structural dynamics. Therefore an accurate description of the

flow field as well as structural dynamic behaviour together with a

mechanism of coupling between the two are essential for flutter

analysis.

Avoiding flutter is a mandatory requirement in any aircraft de-

sign process. Although flutter analysis is a relatively old problem in

aviation, it is still challenging, particularly with the advent of com-

posite materials and requirement of high speeds. The main chal-

lenge for this problem is at the transonic flow region. The transonic

flutter limit appears to be low in any flight range. Therefore for

an aircraft the most critical flutter point generally arises when the

flow is transonic. The phenomenon is called transonic dip which

has featured in the literature many times [5,6]. The transonic flow

field is a transition between subsonic flow and supersonic flow ex-

hibiting shock waves and highly non-linear behaviour.

The transonic flow being non-linear poses a great challenge

over traditional linear theories [7] which fail to predict accurately

the aerodynamic properties. Therefore solving the non-linear gov-

erning equations of fluid flow using numerical techniques has be-

come essential [3,8–10]. Despite the computational cost of using
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CFD, it is appropriately being used in the aeroelasticity field for

greater accuracy and better flutter prediction. This has given birth

to a new field in aeroelasticity called computational aeroelasticity

which couples computational fluid dynamics (CFD) with computa-

tional structural dynamics (CSD) [11].

In the next section a concise theoretical background is given fo-

cusing on the governing equations of the aeroelastic system. Then

the numerical methods and the implemented code are explained.

Finally, the results of the two validation cases are discussed in de-

tail. This paper is based on an earlier paper [12] but with some

enhancement. The essential improvement in this paper appears in

the results of the first case study which is improved considerably

compared to the previous work. This improvement is mainly due

to some refinement in the convergence criteria and better bound-

ary condition for the slip moving wall.

Following the publication of the conference paper by the au-

thors [12], an updated version of the software OpenFOAM-2.3 has

now been used [13]. The newer version introduced many improve-

ments, particularly in parallel running performance and the imple-

mentation of a new dynamic mesh solver. Also another important

improvement in this release is the inclusion of an enhanced ordi-

nary differential equation solver library which is directly relevant

to the present work [14]. Due to these modifications some of the

implemented features by the authors have been updated in this

paper.

2. Theoretical background

2.1. Aerodynamic model

The governing equations of the flow are the complete Euler

equations [15–17]. If ρ , u, p and E are density, velocity, pressure

and total energy respectively, the Euler equations in vector nota-

tion will then have the following form;

• Conservation of mass:

∂ρ

∂t
+ ∇ · [uρ] = 0 (1)

• Conservation of momentum:

∂(ρu)

∂t
+ ∇ · [u(ρu)] + ∇p = 0 (2)

• Conservation of total energy:

∂(ρE)

∂t
+ ∇ · [u(ρE)] + ∇ · [up] = 0 (3)

where ∇ is the nabla vector operator, ∇ ≡ ∂i ≡ ∂
∂xi

≡
( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

). Thus for any vector a, ∇ · a is the divergence

defined by ∇ · a ≡ ∂a1
∂x1

+ ∂a2
∂x2

+ ∂a3
∂x3

. Also for any scalar s, the

gradient is ∇s ≡ ( ∂s
∂x1

, ∂s
∂x2

, ∂s
∂x3

). In Eq. (3), E = e + |u|2
2 with e the

specific internal energy.

2.2. Aeroelastic model

The typical wing section using two-dimensional model [1,3,4]

is well established for studying two degrees of freedom wing dy-

namical system. This model considers the plunging (h) and pitch-

ing (α) motions about the elastic axis of the wing. The governing

equations of undamped motion are [18]:

mḧ + Sαα̈ + Khh = −L (4)

Sα ḧ + Iαα̈ + Kαα = Mea (5)

where m, Iα and Sα are aerofoil mass per unit length, polar mass

moment of inertia about the elastic axis per unit length and static

mass imbalance respectively. Kh and Kα are bending and torsional

spring stiffness whereas L and Mea are the lift force (positive up)

and moment about the elastic axis (positive nose up). The plung-

ing displacement h is positive down and the angle of attack α is

positive nose up and is in radians. Non-dimensionalising the lin-

ear displacement by the aerofoil semichord (b) in Eqs. (4) and (5)

and the time by the uncoupled natural frequency of the torsional

spring (ωα) so that the dimensionless time is τ = ωαt . The gov-

erning Eqs. (4) and (5) can now be reformulated in the following

matrix form

[M]{q̈} + [K]{q} = {F} (6)

where

[M] =
[

1 xα

xα r2
α

]
; [K] =

[
( ωh

ωα
)2 0

0 r2
α

]
(7)

{F} = U2
∞

πμω2
αb2

{
−Cl

Cm

}
; {q} =

{
h
b
α

}
(8)

In Eq. (6), [M] and [K] are the mass and stiffness matrices,

and {F} and {q} are the force and displacement vectors. The non-

dimensional aerofoil mass ratio is μ = m
πρb2 with xα and rα being

the static unbalance and the radius of gyration respectively. The

uncoupled natural frequencies in plunging and pitching motion are

ωh and ωα , respectively. Cl and Cm represent the lift and moment

coefficients which have the same sign convention as the aerody-

namic forces and moment L and M.

2.3. Modal analysis

The main objective now is to solve Eq. (6) which represents the

aerofoil motion in two degrees of freedom namely the heave and

pitch. In order to solve the equations the modal analysis methodol-

ogy is used. The main concept is representing the system displace-

ments as a linear combination of the free vibration mode shapes

through the use of generalised coordinates. In general, if a combi-

nation of the first few modes of free vibration say N is used, then

according to modal approach the displacement vector can be rep-

resented as

{q} = [φ]{η} (9)

where [φ] is the modal matrix in which each column is an eigen-

vector of the free vibration analysis eigen-problem and {η} is the

generalised coordinates. Premultiplying Eq. (6) by [φ]T and substi-

tuting using (9) and applying the eigenvectors orthogonality lead

to a set of second order ordinary differential equations in gener-

alised coordinates. Each equation is represented by its mode, say

ith mode [18,19] to give

η̈i + 2ζiωiη̇ + ω2
i ηi = Qi; i = 1, 2, . . . , N (10)

where

Qi = {φ}T
i {F} (11)

ω2
i = {φ}T

i [K]{φ}i (12)

1 = {φ}T
i [M]{φ}i (13)

and ζ i in Eq. (10) is modal damping which is not considered in

(6). The modes are normalised in a way such that the generalised

mass matrix became an identity matrix. In this paper the struc-

tural system is considered as an undamped system. However, the

damping is shown in Eq. (10) just for reference and showing how

the system damping can be considered in the future work.

It is clear from the above equations that to calculate the system

displacement vector from Eq. (9), modal matrix [φ] and the gener-

alised coordinates vector {η} should be obtained first. Determining
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