
Data structures and algorithms for high-dimensional structured adaptive
mesh refinement

Magnus Grandin
Division of Scientific Computing, Dept. of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden

a r t i c l e i n f o

Article history:
Received 23 September 2014
Received in revised form 1 December 2014
Accepted 10 December 2014
Available online 28 January 2015

Keywords:
Structured adaptive mesh refinement
Anisotropic mesh
High-dimensional
Hierarchical data structure
kd-tree
Morton order
2:1 balancing

a b s t r a c t

Spatial discretization of high-dimensional partial differential equations requires data representations
that are of low overhead in terms of memory and complexity. Uniform discretization of computational
domains quickly grows out of reach due to an exponential increase in problem size with dimensionality.
Even with spatial adaptivity, the number of mesh data points can be unnecessarily large if care is not
taken as to where refinement is done. This paper proposes an adaptive scheme that generates the mesh
by recursive bisection, allowing mesh blocks to be arbitrarily anisotropic to allow for fine structures in
some directions without over-refining in those directions that suffice with less refinement. Within this
framework, the mesh blocks are organized in a linear kd-tree with an explicit node index map corre-
sponding to the hierarchical splitting of internal nodes. Algorithms for refinement, coarsening and 2:1
balancing of a mesh hierarchy are derived. To demonstrate the capabilities of the framework, examples
of generated meshes are presented and the algorithmic scalability is evaluated on a suite of test prob-
lems. In conclusion, although the worst-case complexity of sorting the nodes and building the node
map index is n2, the average runtime scaling in the studied examples is no worse than n log n.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structured adaptive mesh refinement (SAMR) is an active area
of research within the scientific computing community [1]. By
adjusting the resolution of the computational mesh dynamically
to features in the solution or the computational domain, widely
varying scales of resolution can be represented simultaneously.
In effect, the computational efficiency of a simulation is improved,
possibly by orders of magnitude, allowing for larger computations
and/or shorter execution times due to a reduction in the number of
gridpoints [2]. For problems in two and three dimensions, there are
efficient algorithms and data structures available, relying on quad/
octrees for structuring the mesh blocks [2–5]. However, extending
quadtrees and octrees to higher dimensional trees is problematic
since they yield a fan-out of 2D nodes at every branch, which leads
to an exponential increase in the potential number of tree nodes to
handle. The contribution of this paper is a framework capable of
generating and propagating meshes of arbitrary dimensionality.
Our approach is based on recursive bisection and generates far
fewer mesh nodes compared to 2D-trees of corresponding
refinement.

In order to construct a practical refinement scheme that works
well even in higher dimensions, the framework presented in this

paper is built on a structured block-based refinement strategy [1]
allowing blocks to be refined anisotropically. The mesh nodes and
their mutual relationships are maintained in a kd-tree [6]. With
anisotropic refinement, a block is not restricted to be refined
equally in all dimensions, potentially leading to a more efficient
discretization in terms of the number of created blocks since mesh
blocks are refined only in the dimensions in which they would ben-
efit from finer resolution. The grid is refined successively by divid-
ing blocks in half, dimension by dimension. If a block needs
refinement in more than one dimension, this is done by subse-
quent division in several steps. This paper does not consider details
regarding error estimation and how to determine when refine-
ment/coarsening is required. For the anisotropic refinement strat-
egy to be useful though, the error estimator must be able to detect
the discretization error per dimension. An example of such an error
estimator is given in [7].

A kd-tree is a binary tree representation of a hierarchical subdi-
vision of a D-dimensional hyperrectangle by recursive bisection
[6,8–11]. The interior nodes of a kd-tree represent hyperplane cuts,
aligned with the Cartesian coordinate axes, and the leaf nodes con-
tain the actual data. In a general kd-tree, a cut can be placed any-
where along the split dimension of a block. However, by restricting
the cuts to always be placed in the middle of the block (which we
do by imposing a halving of the blocks on each refinement) the
scheme is simplified significantly. Furthermore, implementations
of kd-trees usually assign split dimensions to nodes cyclically, such

http://dx.doi.org/10.1016/j.advengsoft.2014.12.001
0965-9978/� 2014 Elsevier Ltd. All rights reserved.

E-mail address: magnus.grandin@it.uu.se

Advances in Engineering Software 82 (2015) 75–86

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.12.001&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.12.001
mailto:magnus.grandin@it.uu.se
http://dx.doi.org/10.1016/j.advengsoft.2014.12.001
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


that a node at tree level l is split in dimension (l mod D). In the
implementation presented here, this restriction is relaxed and
nodes are allowed to be split arbitrarily without any intermediate
refinement in the other dimensions. Thus, blocks can become as
elongated as is needed and in principle there is no restriction on
the aspect ratio of the blocks.

It is often motivated for reasons of efficiency and memory
requirements that a pointer representation of a tree structure
should be avoided. By storing locality information in each mesh
node and structuring the nodes in a linear order according to this
information, the internal structure of a tree is available implicitly
and no pointers are needed for searching and navigating it [2–
4,12]. With the leaf nodes stored in linear order (e.g. the Morton
order space-filling curve [13]), tree search is replaced by binary
search, which is further advantageous in terms of search complex-
ity; a tree representing an adaptively refined mesh is potentially
very unbalanced with a search complexity approaching OðnÞ in
the number of leaf nodes, whereas binary search in the linear rep-
resentation is always Oðlog2nÞ [4]. This paper extends previous
work by other authors [2,4] and builds upon linear Morton order
trees. The data structures and algorithms are generalized to enable
an extension to higher dimensionalities. However, the anisotropic
node refinement does not map directly to an efficient consecutive
order of elements solely from the locality information in the leaf
nodes. In order to alleviate this, the linear tree representation is
extended with a lightweight representation of the internal node
structure (a node map index), corresponding to a hierarchical Mor-
ton order of nodes. The node map index is constructed at the same
time as the nodes are sorted and stored in a compact array repre-
sentation for efficient traversal.

The remainder of this paper is organized as follows. In Section 2,
some related work is discussed. A key concept in our implementa-
tion is the notion of location codes, which is described in Section 3.
In Section 4 the construction of a hierarchical Morton order index
is derived together with some implementation details. The algo-
rithms for tree search are discussed in Section 5, followed by the
adaptive mesh algorithms in Section 6. Finally, Section 7 gives
some results of our implementation and Section 8 concludes the
paper.

2. Related work

To our knowledge, there are no dynamically adaptive frame-
works available that support anisotropic SAMR on hyperrectangu-
lar domains in D dimensions. Klöfkorn and Nolte described the
implementation of the SPGrid interface of the DUNE framework
[14,15], which allows anisotropic structured grids of higher dimen-
sionality but only handles static meshes. An alternative approach
to tackling higher dimensions is to discretize the domain into
structured simplex meshes [16–19]. In [11], a two-level approach
of combining hypercubes and simplices is presented.

The most typical uses of kd-trees are within domain decompo-
sition for clustering of scattered point data, nearest neighbor
search and raytracing, although they were originally developed
for efficient searching in multidimensional data bases [6]. It is
straightforward to adopt the kd-tree structure to any form of
domain decomposition problem. This paper demonstrates how
kd-trees can be used for adaptive mesh refinement by subdividing
the computational domain until every block in the domain consti-
tutes a fine enough grid resolution for the error in that part of the
grid to be below some tolerance. Although presented in this
setting, the techniques presented in this paper can potentially be
useful in more general kd-trees and for other applications.

Samet and Tamminen [20,21] developed a tree structure that is
closely related to the kd-tree, which they refer to as the binary
image tree (bintree). It is a pointerless tree structure developed

for connected component labeling [21] of D-dimensional images,
connecting pixels of an image into a hierarchy of larger objects.
The tree structure representation of the pointerless bintree is sim-
ilar to the way our trees are represented, and their algorithms for
connected component labeling share some features with the
search algorithms presented in this paper.

Throughout this paper, the Morton order space-filling curve is
used for linear indexing of mesh elements, due to its simplicity
and direct correspondence to recursive bisection and binary trees.
Other alternatives have better locality properties, e.g. the Hilbert-
curve and the Peano-curve [22], but are more complex to compute
and not straightforward to use with the anisotropic refinement
presented in this paper.

3. Location codes

A mesh block represents a hyperrectangle (orthotope) subdo-
main of the discretized D-dimensional space. The location code
[2,4] of an orthotope is a unique identifier that encodes the
location and refinement of the corresponding mesh element. The
location code has two components; (1) a coordinate in space with
respect to the orthotope anchor, and (2) refinement level informa-
tion (per dimension). The anchor of an orthotope is chosen by
convention to be the lowermost corner in every direction, given
by D integer coordinates. Fig. 1 depicts an example node hierarchy
and the corresponding mesh with location codes indicated for each
mesh node. The integer representation of coordinates directly cor-
respond to the orthotope’s location in the unit hypercube and
allows for efficient bitwise integer operations. The actual coordi-
nates of mesh blocks in the domain can be obtained by scaling
the unit hypercube coordinates to the domain boundaries. Due to
the anisoptropic refinement, separate refinement levels must be
stored in each dimension (D integers). This is a generalization of
the location codes used with linear quad/octrees, which only have
one integer component for the refinement level due to their isotro-
pic nature.

The coordinates of an orthotope are constructed and stored as
follows [2]. Each coordinate is represented by B bits, for a total
of DB bits for the entire coordinate set of an orthotope. Subdividing
an orthotope at level l in dimension xi updates the lth bit in the ith
coordinate accordingly. The leftmost bit of a coordinate is the most
significant and corresponds to the first subdivision in the corre-
sponding dimension, the second leftmost bit corresponds to the
second subdivision, and so forth. The bits that are below the refine-
ment level of an orthotope are set to 0. Thus, the integer size B
relates to the maximum level of refinement in any dimension
and requires only dlog2Be bits per dimension for storage of the
refinement levels. It is straightforward to combine the coordinates
and refinement levels in a single integer per dimension, and given
32-bit integers for the storage this still allows for 27 levels of
refinement per dimension to be represented.

3.1. Atoms

For some operations on the tree it is necessary to reason about
the smallest possible domain units in the mesh. Throughout this
paper, these components are referred to as atoms (also referred
to as smallest or least descendants by other authors [2,4]). By
definition, an atom is of refinement level B in all dimensions. The
domain and all its subcomponents can be viewed as overlying a
fine grid of atoms, such that an orthotope is spanned by its first
and last atoms (i.e. the first and last atoms in the range of linear
indices that the orthotope covers). Fig. 2 illustrates how an ortho-
tope depends on a hierarchy of coarser orthotopes and how these
are mapped onto the grid of atoms. Further indicated in the figure
are the anchors and the first and last atoms of each orthotope.

76 M. Grandin / Advances in Engineering Software 82 (2015) 75–86



Download English Version:

https://daneshyari.com/en/article/569592

Download Persian Version:

https://daneshyari.com/article/569592

Daneshyari.com

https://daneshyari.com/en/article/569592
https://daneshyari.com/article/569592
https://daneshyari.com

