
Dynamic analysis of structures on multicore computers – Achieving
efficiency through object oriented design

R.I. Mackie ⇑
Civil Engineering, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK

a r t i c l e i n f o

Article history:
Available online 18 April 2013

Keywords:
Component-oriented
Object-oriented
Eigenproblems
Transient analysis
Seismic analysis
Parallel computing
Distributed computing

a b s t r a c t

The paper examines software design aspects of implementing parallel and distributed computing for
transient structural problems. Overall design is achieved using object and component oriented methods.
The ideas are implemented using .NET and the Task Parallel Library (TPL). Parallelisation and distribution
is applied both to single problems, and to solving multiple problems. The use of object-oriented design
means that the solvers and data are packaged together, and this helps facilitate distributed and parallel
solution. Factory objects are used to provide the solvers, and interfaces are used to represent both the
factory objects and solvers.

� 2013 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

There have been many changes in computing hardware and
software. One of the most recent is that virtually all computers
are now multi-core, typically dual or quad core. This has implica-
tions for the design of software, which has yet to be fully realised.
Techniques for parallel computing have largely been developed for
high-performance computing (HPC) on super computers or clus-
ters of workstations. This has some relevance to the new world
on everyday computers, but there are other possibilities as well.
One of these is the user-interaction and software. HPC is largely
geared at solving highly complex problems that require massive
computing resources and take a long time. This has some relevance
to normal computing as desktop computers are now capable of
solving much more complex problems than used to be the case.
Furthermore computers are linked together on intranets and the
internet, so the creation of clusters of computers is relatively easy.
However, the usability of engineering software, and the way the
software can be used in design is equally important, and the power
and architecture of current computers changes what is now possi-
ble. This paper will look at some of the possibilities in the area of
dynamic analysis of structures, with particular focus on seismic
engineering. However, the ideas presented are much more widely
applicable. The paper will also emphasise key software design
decisions that facilitate the exploitation of the modern computing
environment.

Current software developments are addressing the new envi-
ronment, in particular version 4.0 of Microsoft’s .NET framework.
The .NET framework was developed with distributed and multi-
threading computing in mind, and has had facilities for simplifying
software development for this world. Version 4.0 has introduced
the Task Parallel Library (TPL) [1] to facilitate software for multi-
core computing. There is a tendency to think that HPC should be
performed using MPI and on Linux machines. MPI and Linux defi-
nitely have their place, but the reasons for using .NET in the current
work are:

� Windows is the most commonly used operating system. Now
on supercomputers Unix/Linux based operating systems are
by far the most common. However, the overarching motiva-
tion behind the current work is that parallel and distributed
computing are now part of the mainstream computing world.
Therefore it is appropriate to consider the application of tech-
nologies designed for mainstream computing.
� The .NET infrastructure is available on all Windows computers,

so there is no need to install any further software.
� .NET provides parallelisation and distribution in an object and

component oriented fashion, so it is consistent with the overall
design philosophy.

Dynamic problems in structures are among the more expensive
in computational terms, they also generate an incredible amount of
data. So there are two problems that need to be addressed in
software development: efficient numerical problems, and data
handling. Work on parallelism typically focuses on parallelising

0965-9978/$ - see front matter � 2013 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

⇑ Tel.: +44 1382 384702; fax: +44 1382 384816.
E-mail address: r.i.mackie@dundee.ac.uk

Advances in Engineering Software 66 (2013) 3–9

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.advengsoft.2013.03.006&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006
mailto:r.i.mackie@dundee.ac.uk
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


the solution of a single problem. However, it can also sometimes be
useful to solve several problems at once, and in terms of parallel-
ism this is actually simpler as one can expect to achieve greater
speed-up. The work described in this paper will apply parallelisa-
tion to both aspects. While earthquake engineering provided the
motivation for this work, the software engineering aspects of this
work are much more widely applicable.

The motivation for the current work is the analysis of space
structures under seismic loading. On the one hand, the object-ori-
ented implementation of modal and transient analysis algorithms
will be examined. Earthquakes are by their very nature uncertain,
so it is useful to look at the behaviour of a structure under several
different earthquakes. The new environment makes this much
more feasible, and the design of software to facilitate this will be
described.

The advantages of parallel and distributed processing can be
used in various ways:

1. Application to individual algorithms.
2. Application to solving multiple problems simultaneously.
3. Overall program design.

This paper will look at all three of these aspects, making use of
object and component oriented programming design. It should be
noted that the primary emphasis of the current paper is on pro-
gram design rather than numerical efficiency. Therefore the focus
is on explaining design approaches to make implementation of
flexible parallel and distributed programs easier on mainstream
computers.

2. Literature review

Modal analysis and time stepping are both well established, and
there are many algorithms for solving these problems. A good
description of general techniques relevant for finite element anal-
ysis can be found in Bathe [2]. There has been a significant amount
of work on parallelisation of both eigenproblems solvers and time
stepping algorithms. The main methods used for eigensolution
methods are sub-space iteration, the Lanczos method, and compo-
nent mode synthesis.

PARPACK [3] is a parallel package for large eigenvalue problems.
Wu and Simon [4] implemented a parallel Lanczos method for the
symmetric generalised eigenvalue problem, and used MPI. Guarra-
cino et al. [5] used a block Lanczos algorithm to solve eigenprob-
lems on multiple computers. Honglin et al. [6] have used a
parallel implementation of the sub-space iteration method, and
applied it to non-linear problems.

Cross [7] and Aoyama and Yagawa [8] both used parallel imple-
mentations of the component mode synthesis method. They re-
ported near ideal speed-up on massively parallel computers.
However, the work was based on one dimensional splitting of
the structure into sub-domains.

Li et al. [9] described the uses of supercomputers and Nastran
and Patran, and use IRAM (implicit restarted Arnoldi method) for
symmetric eigenproblems, and achieved up to 75% speed-up
efficiency.

Most of the work has used MPI or other parallel methods. There
is very little on the object or component oriented implementation,
the work of Heng and Mackie [10] being an exception to this. A
more general consideration of the use of MPI, Java and C# in par-
allel and distributed computing can be found in Mackie [11]. It
should be noted that another area that is receiving considerable
attention is the use of Graphics Processing Units (GPUs) for general
purpose computing, seeking to take advantage of the fact that
GPUs have many cores and are high-performance [12].

Manolis et al. [13] uses sensitivity and stochastic modelling to
help develop retrofit strategies for structures under seismic load-
ing. Such work requires many analyses. Dere and Sotelino [14] also
commented on the need for multiple analyses for establishing re-
sponse spectra in non-linear problems. They implemented a paral-
lel sub-domain solution approach using a group-implicit
algorithm. Fu [15] also used a sub-domain approach, but with an
overlapping domain algorithm,

3. Object oriented program design

The work in this paper will be described within the context of
seismic engineering and space structures, but the work described
herein is not limited to this problem area. Rather, it is used as a
vehicle for demonstrating various program design principles and
methods.

As noted in the introduction, there are various ways in which
programs can take advantage of parallelism and distributed pro-
cessing. The most obvious, and probably the most common, is
the application of parallelism to individual problems. If multiple
problems need to be solved, then these too can be done in parallel.
Within the context of seismic engineering, earthquakes are by their
very nature stochastic, and the precise earthquake a structure may
have to endure is not known. So it can be useful to subject a struc-
ture to a variety of earthquakes. In addition, there is the general de-
sign of the program. The presence of multiple processors means
that the program can do several tasks at once, so often it is not nec-
essary for the program to stop completely while doing some tasks.
This can help with the overall usability and flow of the program.
The software described in thus paper was written using C# and
the .NET environment, version 4. C# is object and component ori-
ented, and version 4 of .NET has introduced the Task Parallel Li-
brary (TPL).

3.1. Parallelising of individual algorithms

The algorithms involved in seismic analysis are: (i) determina-
tion of the modal frequencies and mode shapes; (ii) modal super-
position; (iii) transient analysis.

Determination of the vibration modes by the subspace iteration
method was examined in [16]. The algorithm itself can be paralle-
lised. Further parallelisation can be achieved by using domain
decomposition. The paper described the use of a design pattern
which has also been used in the design of software for iterative
solvers [17]. The work described in [18] has been modified to use
the TPL, but the overall design remains the same. [10] described
the implementation of component mode synthesis. Work by others
has parallelised the Lanczos algorithm.

The results of the modal analysis can be used in the mode
superposition method, though naturally this applies only to linear
problems.

Transient analysis can be applied to linear and non-linear prob-
lems. Since the focus of the current work is on software design as-
pects, the work in the current paper is limited to the linear case.
The Hilber–Hughes–Taylor algorithm is used, and the design pat-
tern used for eigensolution and iterative solvers [16,17] is adopted.

The key feature of the design pattern is the separation of the
algorithm from the data. The algorithm for a particular problem re-
mains the same, but it may be implemented for many different
data structures. For instance the standard solution would be the
use of a single domain, but the algorithm can also be implemented
for the domain decomposition case. Furthermore, the data may be
stored locally or remotely, or a mixture of the two. Even then, for
each of these cases there are a multitude of sparse data storage
schemes that can be used. However, despite all these variations,

4 R.I. Mackie / Advances in Engineering Software 66 (2013) 3–9



Download English Version:

https://daneshyari.com/en/article/569606

Download Persian Version:

https://daneshyari.com/article/569606

Daneshyari.com

https://daneshyari.com/en/article/569606
https://daneshyari.com/article/569606
https://daneshyari.com

