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a b s t r a c t

In this work a simple and efficient finite element model is used for the damping optimization of multi-
layer sandwich plates, with a viscoelastic core sandwiched between elastic layers, including piezoelectric
layers. The elastic layers are modeled using the classical plate theory and the core is modeled using
Reddy’s third-order shear deformation theory. The finite element formulation is obtained by assembly
of N ‘‘elements’’ through the thickness, using specific assumptions on the displacement continuity at
the interfaces between layers. The free vibration response of damped multilayer sandwich structures
is characterized by solving an eigenvalue problem to obtain the fundamental natural frequency and cor-
responding modal loss factor. The optimization is conducted in order to maximize the fundamental
modal loss factor, using gradient based algorithms, and afterwards, considering steady state harmonic
motion the analysis is conducted in time domain to obtain the structure response. The model is applied
in the solution of some illustrative examples and the results are presented and discussed.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Viscoelastic sandwich composites are structures in which a vis-
coelastic layer is sandwiched between elastic layers, and are
widely used in engineering applications in order to reduce vibra-
tion amplitude and noise. In this situation, the passive damping
is introduced by the strong transverse shear in the core. Using
simultaneously viscoelastic and piezoelectric layers, we have a hy-
brid structure with an active–passive damping treatment. That is,
the piezoelectric actuator uses the active control mechanism based
on induced in-plane piezoelectric actuation strains, and the passive
constrained layer uses its passive damping mechanism based on
vibratory energy dissipation through transverse shear strains
induced in the viscoelastic layer [1].

Initially, analytical models were developed to obtain approxi-
mate loss factors and natural frequencies of sandwich beams or
plates with viscoelastic core, with simply supported boundary con-
ditions. These can be found in the works of DiTaranto and Blasin-
game [2], Mead and Markus [3], Yan and Dowell [4], and Rao [5],
among others.

The use of finite element models for the analysis of damped
beams and plate sandwich structures, is found in some works in
the literature. Rikards et al. [6] present laminated superelements
formed through simple beam or plate finite elements for each

layer, with four nodes or six nodes for beam or plate respectively,
and based on the first-order shear deformation theory. Yi and
Hilton [7] developed a rectangular plate element model based on
Mindlin theory. Jonhson et al. [8] and Lu et al. [9] present a model
obtained by two plate elements for the face layers and one solid
element for the viscoelastic core. Moreira et al. [10] developed a
model with a 4-node facet type quadrangular shell finite element,
based on layerwise theory, and benchmarked it on the analysis of
damped beams and plate sandwich structures.

Finite element models for active–passive structures, have been
proposed among others by Boudaoud et al. [11] which presented a
five-layered finite element for control of composite structures with
piezoelectric and viscoelastic layers, and recently Araújo et al. [12]
developed an eight node serendipity sandwich plate finite element
formulated using a mixed layerwise approach, where the assumed
displacement field for the viscoelastic core is based on a third order
expansion of the thickness coordinate, regarding in-plane displace-
ments and a first order theory for the elastic and piezoelectric
layers.

Optimal design of constrained layer damping treatments of
vibrating structures focused at the maximization of modal damping
ratios is also an important research field. Baz and Ro [13] optimized
constrained layer damping treatments considering the thickness
and shear modulus of the viscoelastic layer as design variables. Lif-
shitz and Leibowitz [14] also using the layer thicknesses as design
variables, determined the optimal passive constrained layer damp-
ing. Araujo et al. [15,16] developed a mixed layerwise sandwich fi-
nite element model for analysis and damping optimization of
viscoelastic laminated sandwich composite structures.
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In this work we present optimization of the fundamental modal
loss factor of sandwich structures using gradient based algorithms,
using a simple and efficient finite element model, developed by
Moita et al. [17], and non-linear mathematical programming tech-
niques described by Vanderplaats [18]. Thus, the modal loss factor
is the objective function and the design variables are the fiber an-
gles of elastic layers, and the thicknesses of the elastic and visco-
elastic layers. The present model is applied to beam, plate and a
shell structure and results are compared with alternative solutions.

2. Sandwich plate model

Fig. 1 shows a typical sandwich plate for analysis of hybrid
sandwich laminated plates with a viscoelastic core (v), laminated
anisotropic face layers (e1, e2) and piezoelectric sensor (s) and
actuator (a) layers.

Sandwich plates with viscoelastic cores are very effective in
reducing and controlling vibration response of structures. Due to
the high shear developed inside the core, and to the high ratios
of skin to core stiffness, equivalent single layer plate theories are
not adequate to describe the behavior of these structures. The fi-
nite element model that is used in this work to carry out the opti-
mization process is obtained by assembly of N ‘‘elements’’
throughout the thickness, enforcing displacement continuity at
the interfaces between layers [17].

Although sensor and actuator layers are included in the formu-
lation presented here, the piezoelectric effect will not be consid-
ered for optimization purposes in this work, as it deals only with
optimization of passive damping.

For the viscoelastic layer, Reddy’s third-order shear deforma-
tion theory [19] is assumed. Thus, the displacement field is:

uðx; y; z; tÞ ¼ uv
0ðx; y; tÞ � zhyðx; y; tÞ þ z3c1 hyðx; y; tÞ � @w0

@x

� �
vðx; y; z; tÞ ¼ vv

0ðx; y; tÞ þ zhxðx; y; tÞ þ z3c1 �hxðx; y; tÞ � @w0
@y

h i
wðx; y; z; tÞ ¼ w0ðx; y; tÞ

ð1Þ

where uv
0 ;vv

0 ;w are displacements of a generic point in the middle
plane of the core layer referred to the local axes – x, y, z directions,
hx, hy are the rotations of the normal to the middle plane, about the x
axis (clockwise) and y axis (anticlockwise), ow0/ox, ow0/oy are the
slopes of the tangents of the deformed mid-surface in x, y direc-
tions, and c1 = 4/3h2, with h denoting the total thickness of the
structure.

For the elastic and piezoelectric layers the Kirchhoff–Love the-
ory is considered. The corresponding displacement field is:

uiðx; y; z; tÞ ¼ ui
0ðx; y; tÞ � ðz� ziÞ @w0

@x

v iðx; y; z; tÞ ¼ v i
0ðx; y; tÞ þ ðz� ziÞ � @w0

@y

� �

wiðx; y; z; tÞ ¼ w0ðx; y; tÞ

ð2Þ

where ui
0; v i

0 are the in-plane displacements of a generic point in the
middle plane of the i layer, ow0/ox, �ow0/oy are the slopes of the

tangents of the deformed mid-surface in x, y directions respectively,
and zi is the z coordinate of the mid-plane of each layer, with refer-
ence to the core layer mid-plane, and i = s, e1, e2, a is the index of
sensor, upper and lower elastic, and actuator layers respectively.

In this formulation, an exact continuity between layers is con-
sidered. Thus, the displacement field in any layer can be obtained
from the displacement field of the viscoelastic layer, taking into
consideration the conditions of kinematic links, as shown in Moita
et al. [17]. Hence, the number of degrees-of-freedom (DOF) is re-
duced to 7 mechanical nodal DOF: uv

0 ;vv
0 ;w0, �@w0/@y, @w0/@x, hx

and hy. A linear electric potential field through the thickness direc-
tion of each piezoelectric layer is also assumed, leading to 1 electri-
cal DOF per piezoelectric layer.

It is assumed here, that the laminate consists of several layers,
including the piezoelectric, elastic, and viscoelastic layers. The con-
stitutive equation for the last two types of layers, are

�r ¼ �Q �e ð3Þ

and the constitutive equations of a deformable piezoelectric mate-
rial, coupling the elastic and the electric fields are given by [20].

�r ¼ �Q �e� �e�E
�D ¼ �eT�eþ �p�E

ð4Þ

where all the quantities appearing in the above equations are
explicitly defined in [17].

For the case of viscoelastic materials, the engineering constants
are taken to be complex:

E1 ¼ E01ð1þ igE1
Þ

E2 ¼ E02ð1þ igE2
Þ

m12 ¼ m012ð1þ igm12
Þ

G12 ¼ G012ð1þ igG12
Þ

G13 ¼ G013ð1þ igG13
Þ

G23 ¼ G023ð1þ igG23
Þ

ð5Þ

where the prime (0) quantities are storage modulus, g denotes mate-
rial loss factors and i ¼

ffiffiffiffiffiffiffi
�1
p

. It should be noted that in Eq. (5) both
storage modulus and loss factors are, in general, frequency
dependent.

The electric field vector is the negative gradient of the electric
potential /, which is assumed to be applied in the thickness direc-
tion, where it can vary linearly, i.e.

�E ¼ �r/ ¼ f0 0 Ez gT ; Ez ¼ �/=hp ð6Þ

where hp is the thickness of a piezoelectric layer.

3. Finite element formulation

A non-conforming triangular finite element model is used with
three nodes and seven degrees of freedom per node, the displace-
ments u0i

;v0i
;w0i

, the slopes ð�@w0=@yÞi; ð@w0=@xÞi, and the rota-
tions hxi; hyi. To solve shell problems we consider fictitious
stiffness coefficients Khz, to eliminate the problem of a singular
stiffness matrix, when the elements are coplanar, and an extra de-
gree of freedom of freedom hzi is introduced per node [17,21,22].

The element local displacements, rotations and slopes, are ex-
pressed in terms of nodal variables through shape functions Ni gi-
ven in terms of area co-ordinates Li. The displacement and strain
fields are explicitly defined in [17].

3.1. Free vibration analysis

The dynamic equations of a sandwich plate, including piezo-
electric layers, can be derived from the Hamilton’s principle. TheFig. 1. Sandwich plate.
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