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a b s t r a c t

In the paper, a model is firstly formulated for a pipeline network of variable connectivity in the terminol-
ogy of graph theory. Through analyzing the topological changes of the pipeline network caused by con-
necting or disconnecting a pipe, several procedures are then proposed to construct the incidence matrix
and fundamental circuit matrix of a graph directly from those of its parent graph or graphs without the
time-consuming inversion of the corresponding incidence matrix. Thirdly, the proposed model and topo-
logical analysis procedures are used to establish a dynamic solver for a tank farm together with the chord
flow method of Rahal (1995) [3]. Finally, the dynamic solver is applied to a tank farm of liquor for veri-
fying the model and procedures proposed in this paper.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Pipeline networks are the major facilities of water, air and heat-
ing supply systems. They are also important integral parts of large-
scale chemical, petrochemical, petroleum refining and processing
plants and various tank farms. Their safe and efficient operation
has a great significance for both themselves and other pieces of
equipment connected by them. For design and operation studies
with simulation, many efforts such as Martinez-Benet and
Puigjaner [1], Nielsen [2], Rahal [3], Álvarez et al. [4], and Ivanov
and Bournaski [5], have been devoted to the development of steady
state and dynamic mathematical models for municipal water distri-
bution networks. To get the pressure and flow dynamics in a pipeline
network, the pseudo-steady state models for slow transients, the
water hammer models for rapid transients, or models hybrid of
the above two kinds are employed. These models involve sets of rigid
differential equations which are usually difficult to be solved.

In modeling the dynamics of chemical processes or tank farms,
pipeline networks are different from those in water distribution sys-
tems: (1) the scale of networks is usually much smaller; (2) the dynam-
ics of networks is neglected since the overall dynamics is usually
governed by equipment units other than the networks themselves.
Therefore, a static solver for a pipeline network can be used as the dy-
namic simulator for the corresponding chemical process or tank farm
with the pressures at nodes corresponding to tanks or other liquid

accumulators changing with time and operations according to the level
equations. In composing the static solver of this paper, the chord flow
method of Rahal will be employed for its high execution speed, low
demand for memory, and insensitivity to initial values.

Such a static or dynamic solver works only for a pipeline net-
work or sub-network which can be expressed by a connected
graph or subgraph. In dynamic simulation, however, the connectiv-
ity of a network may be changed due to connecting and discon-
necting pipes by the operations of their affiliated valves, switches
or pumps. A network may split into sub-networks with smaller
scales, and sub-networks may split further or merge into another
sub-network with a larger scale. That is, the overall graphical
topology of a pipeline network changes, and more than one con-
nected subgraphs are produced. To apply Rahal’s method to such
a pipeline network, topological analysis is necessary to identify
the involved connected sub-networks and the corresponding inci-
dence matrices and fundamental circuit matrices.

In this paper, we use the following strategy to analyze the
topology of a pipeline network of variable connectivity: (1) opera-
tions of connecting or disconnecting pipes are treated one by one.
(2) For each operation, procedures are suggested to derive the inci-
dence matrix and the fundamental circuit matrix of a graph or sub-
graph directly from those of its parent subgraphs or graph, without
the time-consuming inversion of the incidence matrix for deter-
mining the fundamental circuits.

The rest of this paper is organized as follows: in Section 2, a
general framework is constructed for modeling a pipeline network
of variable connectivity. In Section 3, procedures are proposed for
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analyzing the topological changes of a pipeline network caused by
the connection or disconnection of a pipe. In Section 4, a static sol-
ver based on the chord flow method of Rahal is detailed for a con-
nected sub-network. Based the topological analysis procedures and
the static solver, a dynamic solver is developed for a tank farm in
Section 5. Section 6 is a demonstration for verifying the proposed
modeling framework, procedures for topological analysis, and
dynamic solver. Conclusions are drawn in Section 7.

2. Model for a pipeline network of variable connectivity

By a pipeline network of variable connectivity, we mean pri-
marily a pipeline network of which the connections of the pipes
can be changed by connecting and disconnecting pipes through
the operations of their affiliated valves, switches or pumps, though
connectivity also is a measure of the fluid-passing capability of a
pipe related to the opening degree(s) of some valve(s). Obviously,
the connectivity of such a network is certain at each instant of
time. Therefore, such a pipeline network is also referred to as a
pipeline network or simply a network for simplicity, when it is
studied at some certain time instant.

A pipeline network with or without variable connectivity can be
viewed as a directed graph with pipes being the arcs and junctions
of pipes being the nodes. A junection can be a joint at which several
pipes jointed together or a liquid tank, an import source of liquid,
or an export destination. Nodes for normal pipe joints are called
fixed demand nodes, whereas tanks, sources and destinations are
represented by fixed head nodes with constant pressures or pres-
sures specified outside the network. While an arc can be defined
to represent a real pipe (therefore, a real arc hereafter), we also
have pseudo-arcs in order to follow the method of Rahal. According
to Rahal, for a graph with r fixed head nodes, (r � 1) pseudo-arcs
are introduced to link one fixed head node (the reference node)
to the other (r � 1) ones. In this paper, the network in question is
assumed to have b P 0 pipes and n > 0 junctions among which
0 6 r 6 n junctions represent the involved tanks, sources and des-
tinations. Therefore, we have a directed graph (G) of n nodes (Ni,
i = 1,2, . . .,n) and (b + r � 1) arcs (Bk,k = 1,2, . . .,b + r � 1). Further-
more, the algorithm of this paper requires that the r fixed head
nodes be indexed after the (n � r) fixed demand nodes, that is, Ni

is a fixed demand node for i = n � r + 1, n � r + 2, . . .,n. Similarly,
the (r � 1) pseudo-arcs are indexed after the b real arcs, namely,
Bi is a pseudo-arc for i = b + 1, b + 2, . . .,b + r � 1.

2.1. Node and its model

As shown in Fig. 1, a node (Ni) is an airtight space of zero vol-
ume (a point) to join arcs (Bk,k = I1, I2, . . ., Iu) together, has a pressure
of pi and a height of hi meters above the reference plane, and is
demanded to discharge fluid at a flowrate of di (negative value of

di for liquid entrance). For this node, the following mass balance
equation holds

XIu

k¼I1

Q k � di ¼ 0 ð1Þ

where Qk is the flowrate of fluid passing through arc k.
If node i represents a liquid tank, its pressure (at the bottom of

the tank) can be calculated by the following equation

pi ¼ p0
i þ qgHi ð2Þ

where q is the liquid density, p0
i the pressure over the liquid in the

tank, and Hi the liquid level determined by

dHi

dt
¼ � 1

Si

XIu

k¼I1

Qk þ di

 !
ð3Þ

with Si being the cross section area of the tank. In this paper, we as-
sume that the tank represented by node i has a bottom hi meters
high above the reference plane, and all the pieline linked to the tank
are connected at the tank’s bottom. For node i representing an im-
port source or an export destination, a boundary condition for the
network in question, we assume that the node also is hi meters high
above the reference plane and has a pressure pi specified outside the
network.

It is noted that in this paper, we assume that the discharge flow-
rates of all the fixed demand nodes be zero (di = 0). For dyanamic
simulation of a chemical process or a tank farm, it is realistic and
more convenient to take the boundary of a pipeline network as
fixed head nodes.

2.2. Arc and it model

As shown in Fig. 2, an arc (Bk) is an airtight channel for fluid flow
from node Nk0 to Nk1, and is characterized by an element Ek which
may be a simple pipe (Ek = 1), a valve (Ek = 2), a pump (Ek = 3), or a
pseudo-arc (Ek = 4) as seen later. The flowrate through Bk is Qk, and
a negative value of Qk indicates a flow from node Nk1 to Nk0. The
model of an arc is stated below for different arc elements,
respectively.

2.2.1. Model of a simple pipe (Ek = 1)
On a simple pipe, only a two-position switch (Ok) is mounted to

make the pipe fully open (Ok = 1) or completely shutoff (Ok = 0). For
a pipe without such a switch, simply set Ok = 1. From the funda-
mental of fluid dynamics [6], we have the following pressure drop
vs. flowrate model for this simple pipe at Ok = 1:

DPk ¼ pk0 � pk1 ¼ dkQ k � qgðhk0 � hk1Þ ð4Þ

where DPk is pressure difference, and dk the pressure-drop coeffi-
cient calculated by

dk ¼ fpk
lk
dk

q
2
jQ kj ð5Þ

with lk being the pipe’s length, dk the pipe’s diameter, and fpk the
Darcy friction factor evaluated by the formula of Churchill [7] for
all the three (laminar, transitional and turbulent) flow regions

fpk ¼ 8
8
Re

� �12

þ ðR1 þ R2Þ�3=2

" #1=12

ð6Þ

Fig. 1. A node Ni. Fig. 2. An arc Bk.
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