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a b s t r a c t

The collision of two equal-size drops in an immiscible phase undergoing a shear flow is simulated over a
range of viscosity ratios (k) and different geometries. The full Navier–Stokes equations are solved by a
finite difference/front tracking method. Based on experimental data, different cases were simulated by
changing the offset, size of drops, and viscosity ratio. The distance between drop centres along the veloc-
ity gradient direction (z) was measured as a function of time. It was found that Dz increases after collision
and reaches a new steady-state value after separation. The values of Dz, during the interaction, increases
with increasing initial offset. Our results show that the time of approaching of drops at low initial offset is
greater than the other cases, but the maximum deformation is the same for equal drop sizes. The defor-
mation decreases with decreasing the size of drops. As the initial offset increases, the drops rotate more
quickly and the available contact time for film drainage decreases. We found that the trajectories of drops
in the approaching stage are different owing to the different initial offsets. However, after the drops come
into contact, it observed that they follow the same trajectories. As k increases, the drops rotate more
slowly, and the point at which the drops separate is delayed. The trajectories of drops become more sym-
metric with the increased k.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The flow of fluids composing immiscible liquid–liquid mixtures
is of great interest in a wide range of research areas, such as foods,
polymers, pharmaceuticals and cosmetics. The systematic study of
drop deformation and break-up was initiated by Taylor [1]. Taylor’s
experiments revealed the existence of steady rounded and pointed
drops, as well as bursting drops of the same type, depending on the
viscosity ratio and the capillary number. Cox and Mason [2] have
confirmed and extended Taylor’s results. Most efforts have focused
on drop deformation for clean fluid systems in which interfacial
tension gradients are absent. For these drops, experiments, asymp-
totic analysis, and numerical simulations have been performed.
Rallison [3] studied the time-dependent deformation and burst of
a viscous drop in an arbitrary shear flow at zero Reynolds number.
Magna and Stone [4] reported the time-dependent interaction be-
tween two buoyancy-driven deformable drops in a low Reynolds
number flow. Calculations and experiment with initially offset
drops showed that the axisymmetric drop configuration was stable
for sufficiently deformable drops. They introduced three modes for

film drainage between the drops: rapid drainage, uniform drainage
and dimple formation. As the separation distance between the two
drops decreases, the mode of film drainage may change from rapid
drainage to uniform drainage and eventually a dimple may form.
Zhou and Pozrikidis [5] studied the flow of periodic suspension
of two-dimensional viscous drops in a channel that was bounded
by two parallel plane walls. They found that there exists a critical
capillary number below which the suspension exhibits stable peri-
odic motion, and above which the drops elongate and tend to coa-
lesce. Feng et al. [6] reported the results of a two-dimensional
finite element simulation of the motion of a circular particle in a
Couette and Poiseuille flow. They showed that a neutrally buoyant
particle migrates to the centreline in a Couette flow and the stag-
nation pressure on the particle surface is particularly important
in determining the direction of migration. Li et al. [7] studied the
motion of two-dimensional, doubly periodic, dilute and concen-
trated emulsions of liquid drops with constant surface tension in
a simple shear flow. Their numerical method is based on a bound-
ary integral formulation. They showed that the shear flow is able to
stabilize a concentrated emulsion against the tendency of the
drops to become circular and coalesce, thereby allowing for peri-
odic evolution. Loewenberg and Hinch [8] did a three-dimensional
simulation of a concentrated emulsion in shear flow, at zero-Rey-
nolds-number and finite capillary numbers. The collision of two
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equal-sized drops immersed in an immiscible liquid undergoing a
shear flow in a Couette apparatus was investigated by Guido and
Simeone [9] over a range of capillary numbers. Trajectories of the
drops and their deformation were presented.

Mortazavi and Tryggvasson [10] studied the motion of a drop in
poiseuille flow. They simulated the motion of many drops at finite
Reynolds numbers. Esmaeeli and Tryggvason [11] simulated the
motion of two-and three-dimensional buoyant bubbles at finite
Reynolds numbers. They showed that the rise Reynolds number
is nearly independent of the number of bubbles, the velocity fluc-
tuations in the liquid (the Reynolds stresses) increase with the size
of the system. Cristini et al. [12] simulated the drop break-up and
coalescence by an adaptive mesh algorithm. The surface discretiza-
tion was fully adaptive, thus providing accurate resolution for a
highly deformed drop shapes. Their algorithm was used to study
drop break-up in shear flow. Balabel et al. [13] introduced a
numerical model based on the level set method for computing
the unsteady motion of droplets in a channel. Yoon et al. [14]
investigated experimentally the effect of the dispersed to contin-
ues-phase viscosity ratio on the flow-induced coalescence of two
equal-sized drops with clean interfaces. Effects of inertia on the
rheology of a dilute emulsion of drops in shear flow were investi-
gated by Zhao [15] using direct numerical simulation. The drop
shape and flow were computed by solving the Navier–Stokes equa-
tions in two phases using front tracking method. Sibillo et al. [16]
investigated the deformation and break-up of a drop in an immis-
cible equiviscous liquid undergoing unbounded shear flow. They
showed that wall effects can be exploited to obtain nearly mono-
disperse emulsions in microconfined shear flow.

Zhao [17] investigated the drop break-up in dilute Newtonian
emulsions in simple shear flow by high-speed microscopy over a
wide range of viscosity ratios, focusing on high capillary numbers.
He showed that the final drop size distribution intimately links to
drop break-up mechanism, which depends on viscosity ratio and
capillary number.

Lac and Biesel [18] used a boundary integral formulation to
investigate the collision of two identical capsules in simple shear
flow. Each capsule consisted of a viscous liquid drop enclosed by

an elastic membrane. The hydrodynamic interaction was charac-
terized by an irreversible cross-flow displacement after the cap-
sules had crossed each other. They showed for sufficiently spaced
trajectories, the capsules exhibit negative deflections which dis-
place them to closer streamlines.

Bayareh and Mortazavi [19,20] simulated the migration of a
drop and the interaction of two drops in shear flow at finite Rey-
nolds numbers using a finite difference/front tracking method.
They showed that the proper dimensionless parameter for the
interfacial tension is the capillary number; the interaction between
deformable drops increases the cross-flow separation of their cen-
tres. At different values of capillary numbers, the deformation of
drops are maximum when the drops are pressed against each other
and minimum when they are drawn a part. Their results agreed
qualitatively with experimental and theoretical data.

It is important to understand and control the size and size dis-
tribution of the dispersed drops because the macroscopic proper-
ties of the emulsion depend on them. The final size distribution
is determined by a balance between flow-induced break-up and
coalescence. The majority of numerical simulations are based on
the interaction of two deformable drops in a shear flow, the drain-
age of the thin film between two colliding drops and the problems
of coalescence of two deformable drops. Most of experimental ef-
forts are based on blending studies that analyses the drop size dis-
tribution of a blend or a concentrated emulsion.

In this article, we present numerical simulations describing the
effects of geometry and the viscosity ratio on the motion of a pair
of drops under simple shear flow at finite Reynolds numbers.

2. Mathematical formulation

The governing equations for the motion of unsteady, viscous,
incompressible, immiscible two- fluid systems are the Navier–
Stokes equations in conservative form:
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Nomenclature

A area (m2)
b minor axis of the deformed drop (m)
Ca capillary number
D diameter of drop (m)
De Taylor deformation parameter
Fr force due to surface tension on each element of front (N)
h the grid spacing (m)
H the height of the channel (m)
l major axis of the deformed drop (m)
We Weber number
x (x, y, z) position in Eulerian coordinate (m)
X (X, Y, Z)

position in Lagrangian coordinate (m)
n unit vector normal to the drop surface
P pressure (Pa)
R radius of undeformed drop (m)
Reb bulk Reynolds number
Rep particle Reynolds number
s a closed contour (m)
t tangent vector to each element (m)
t⁄ dimensionless time
u fluid velocity vector (m/s)
ub bottom wall velocity (m/s)
ut top wall velocity (m/s)

Greek letters
b indicate two or three-dimensional in Navier–Stokes

equations
d delta function
dA a surface element (m2)
D half of the initial distance between drop centres (m)
Ds a short front element (m)
Dsl the area of the element (m2)
Dt time step (s)
/ijk an approximation to the grid value /g
/f the interface quantity
/g the grid value
/l a distance approximation to the front value /f
_c shear rate (1/s)
j twice the mean curvature for three-dimensional flows
k viscosity ratio
l viscosity (N s/m2)
l0 viscosity of ambient fluid (N s/m2)
ld viscosity of drop (N s/m2)
q density (kg/m3)
q0 density of ambient fluid (kg/m3)
qd density of drop (kg/m3)
r surface tension (N/m)
xl

ijk the weight of grid point ijk
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