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a b s t r a c t

A parsimonious genetic algorithm guided neural network ensemble modelling strategy is presented. Each
neural network candidate model to participate in the ensemble model is structurally selected using a
genetic algorithm. This provides an effective route to improve the performance of the individual neural
network models as compared to more traditional neural network modelling approaches, whereby the
neural network structure is selected through some trial-and-error methods or heuristics. The parsimoni-
ous neural network ensemble modelling strategy developed in this paper is highly efficient and requires
very little extra computation for developing the ensemble model, thus overcoming one of the major
known obstacles for developing an ensemble model. The key techniques behind the implementation of
the ensemble model, include the formulation of the fitness function, the generation of the qualified neu-
ral network candidate models, as well as the specific definitions of the assemble strategies. A case study is
presented which exploits a complex industrial data set relating to the Charpy impact energy for heat-
treated steels, which was provided by Tata Steel Europe. Modelling results show a significant perfor-
mance improvement over the previously developed models for the same data set.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the steel industry maintaining product consistency along
with high quality has become a priority duo to increasing global
competition and high customer demand. The accurate achieve-
ment of specified mechanical properties is becoming a crucial
aspect of many modern steel manufacturers. There is an increased
interest in ‘right first time’ production for critical mechanical and
geometric properties through system engineering approaches.
Mahfouf et al. [1] pointed out that two components are critical
for ‘right first time’ production design, i.e., a reliable prediction
model and an efficient optimisation paradigm. The mechanisms
controlling mechanical properties are highly complex, depending
on both the steel compositions and its microstructures, such as the
grain size, phase fractions and precipitation. These microstructures
are strongly influenced by the undergoing metal manufacturing
route. As the availability of physical knowledge and understanding
of the dynamic behaviours of mechanical properties are often
either insufficient or unavailable to formulate a first-principle
based physical model, data-driven models, such as artificial neural
network and neural–fuzzy models, elicited from carefully assembled

process data have become popular and represent ideal candidates
[2,3]. The research presented here is focused on the development
of reliable prediction models, via the combination of genetic
algorithm (GA) guided neural networks (NN) structure optimisa-
tion, error back-propagation training for NN parameterisation,
and ensemble modelling.

The NN model structure determination still remains an issue in
data-driven modelling. It is common practice that the model struc-
ture be pre-determined in an ad hoc manner, and is largely based
on expert knowledge or via a trial-and-error. While a reasonable
model may be obtained at the end of tedious iterative modelling
process, such an ad hoc approach often results in the model perfor-
mance being ‘sub-optimal’. To overcome such shortcoming, a
GA-based systematic approach [4] is adopted in this paper to unify
the NN structure optimisation with the model parameter optimisa-
tion. This leads to a more systematic search of the model structure
space and a closer integration between the NN structure determi-
nation and the NN model parameterisation.

The aim of this present research is to develop an efficient
strategy to implement the parsimonious genetic algorithm guided
neural network (GA–NN) ensemble model paradigm. The key tech-
niques towards realising such an ensemble modelling scheme
include: the effective generation of the GA population (consisting
of various NN models with different structures), the identification
of candidate neural networks suitable for ensemble, and the
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development of an appropriate ensemble strategy to aggregate
individual candidate neural networks into the final GA–NN ensem-
ble model. Potential benefits from such GA–NN ensemble model-
ling paradigm include improved model performance in terms of
both the prediction accuracy as well as the generalisation proper-
ties. The remainder of this paper is organised as follows. In Section
2 a brief description of the GA–NN model optimisation scheme is
given. The GA–NN optimisation comprises two levels. At the top le-
vel, the NN structure is optimised via a GA-based evolution, while
at the low level (after the NN structure and other critical NN model
options have been setup), an error back-propagation based algo-
rithm with early stopping mechanism is used to train the NN mod-
el parameters. Section 3 is devoted to the algorithmic extension of
GA–NN model optimisation for ensemble modelling. A diversity in-
dex is introduced to measure the novelty of the individual neural
networks generated in each GA generation, this helps to evolve
the GA population with good structural diversities as well as a
superior fitness as measured by the prediction accuracy. The devel-
opment of a fitness-based ensemble algorithm is then presented.
Section 4 describes a case study of the GA–NN ensemble modelling
paradigm to predict the Charpy impact energy for heat-treated
steels, with the modelling data assembled from an industrial data-
base pertaining to Tata Steel Europe. Finally, concluding remarks
and future work are outlined in Section 5.

2. GA–NN model optimisation

Neural networks and fuzzy logic-based models are two widely
used model paradigms for data-driven modelling. In this study, a
three-layer feed-forward neural network, as shown in Fig. 1, is
adopted as the basic structure for GA-optimised NN modelling. It
has previously been proved that such a simple network model pos-
sesses very powerful input–output mapping capability, and can
approximate any continuous nonlinear function with arbitrary
accuracy provided that enough hidden neurons have been used
[5]. The output of the neural network can be expressed as follows:

yðkÞ ¼
XN

j¼1

wj/j

Xn

i¼1

wjixiðkÞ þwj0

 !
þw0 ð1Þ

where x(k) = [x1(k), x2(k), . . . , xn(k)]T is the input vector at time
instant k, y(k) is the corresponding output, wj is the weighting

coefficient of the jth hidden neuron to the output, w0 is the output
bias, wj0 is the input layer bias, wji is the weighting coefficients be-
tween the jth hidden neuron and input xi with i = 0 dedicated for
the associated hidden neuron bias, /j is the nonlinear activate func-
tion of the jth hidden neuron, and N is the total number of hidden
neurons. It is worth noting that in this research there is no nonlin-
ear activation function for the output neuron, and this is often the
case when the neural network is used for regression.

In NN modelling, the determination of the network structure
still lacks a more systematic approach, compared to the training
algorithms available for determining the weighting coefficients.
For a three-layer feed-forward neural network shown in Fig. 1,
the most ‘critical’ structural parameter is the total number of
hidden neurons, N. Often, the determination of the total number
of hidden neurons relies on individual modellers’ preferences
and experiences, with the help of some heuristic guidelines.
Generally speaking, the optimal value of N should be positively
correlated with the complexity of the process and the data to
be modelled. While increasing the value of N enhances the neu-
ral network’s ability of mapping complicated input/output
behaviour, there is a risk of over-fitting if N becomes too large.
The type of nonlinear activation functions of the hidden neurons
also plays an important role towards the input/output behaviour
of the NN.

Training algorithms also play a significant role in NN modelling.
There exist considerable differences among different training algo-
rithms in terms of algorithm efficiency, computational complexity,
memory requirement, etc. The effectiveness and efficiency of dif-
ferent training algorithms are often compounded by the nature
of the process to be modelled, the size of the modelling data, the
dimension of input/output variables, and the underlying network
structure. There exists no single training algorithm which is uni-
versally optimal across all attributes. In this research, training algo-
rithms are limited to the category of error back-propagation, such
as gradient descent, scaled conjugate gradient, or the Levenberg–
Marquardt algorithm [6].

Data pre-processing is an important step [7] in the data model-
ling process, and normally includes data cleaning, normalisation,
transformation, feature selection, etc. Data pre-processing prior
to NN training may be desirable in order to simplify the tuning
of the training algorithm, speed up the training convergence rate,
and avoid training saturation [6]. In this paper, the focus is on
the data normalisation, as other aspects of data pre-processing,
such as data cleaning and feature selection, have already been
dealt with in previous research work. Data normalisation aims at
producing a data set where the variations across different inputs
are more consistent, so that the numerical analyses in the model-
ling stage become easier to handle. Often, data normalisation is
implemented via some kind of linear or nonlinear data scaling.
One common data normalisation option for NN network with sig-
moid activation functions is to scale all the inputs and outputs into
a range of [�1, 1]. Another frequently used option is to transform
the inputs/output variables into a new data set such that it has a
zero-mean and a unit variance.

An integrated optimisation strategy is first proposed based on
genetic algorithms [8,9], to determine the best combination of
the neural network structure, the nonlinear activation function
for the hidden neurons, the appropriate data pre-processing op-
tion, and the training algorithm for learning the weighting coeffi-
cients of the selected NN structure. To facilitate the discussion of
the GA–NN optimisation strategy development, a GA decision
vector b is introduced by aggregating all the decision parameters
mentioned above, and b is given as follows:

b ¼ ½N; Fact; Talg ; Ppro�T ð2Þ
Fig. 1. Feed-forward NN with single hidden layer.
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