
A software tool for semi-automatic gridification of resource-intensive Java
bytecodes and its application to ray tracing and sequence alignment

Cristian Mateos a,c,⇑, Alejandro Zunino a,c, Matías Hirsch b, Mariano Fernández b, Marcelo Campo a,c

a ISISTAN Research Institute – Campus Universitario, Tandil, Buenos Aires, Argentina
b UNICEN University – Tandil, Buenos Aires, Argentina
c Consejo Nacional de Investigaciones Científicas y Técnicas – Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina

a r t i c l e i n f o

Article history:
Received 9 January 2011
Accepted 15 February 2011

Keywords:
Computational grids
Gridification
Resource-intensive applications
Automatic parallelism
Parallelization heuristics
Java bytecode

a b s t r a c t

Computational Grids deliver the necessary computational infrastructure to perform resource-intensive
computations such as the ones that solve the problems scientists are facing today. Exploiting Computa-
tional Grids comes at the expense of explicitly adapting the ordinary software implementing scientific
problems to take advantage of Grid resources, which unavoidably requires knowledge on Grid program-
ming. The recent notion of ‘‘gridifying’’ ordinary applications, which is based on semi-automatically
deriving a Grid-aware version from the compiled code of a sequential application, promises users to
be relieved from the requirement of manual usage of Grid APIs within their source codes. In this paper,
we describe a novel gridification tool that allows users to easily parallelize Java applications on Grids.
Extensive experiments with two real-world applications – ray tracing and sequence alignment – suggest
that our approach provides a convenient balance between ease of gridification and Grid resource exploi-
tation compared to manually using Grid APIs for gridifying ordinary applications.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Computational Grids are distributed heterogeneous clusters
that allow scientists to build applications that demand by nature
a huge amount of computational resources such as CPU cycles
and memory [14]. Examples of such applications include aerody-
namic design, weather prediction, catastrophe simulation, finan-
cial modeling, drug discovery, amongst others. The sad part of
the story is that taking advantage of such computational infra-
structures requires significant development effort and knowledge
on distributed as well as parallel programming. In other words,
there is a very high coupling between the tasks of writing the
sequential implementation of the algorithm that represent a simu-
lation and obtaining its Grid-enabled version. As a consequence, at
development time, a user must take into account the functional as-
pects of his application (what the application does) as well as many
details of the underlying Grid execution infrastructure (how the
application executes). Clearly, the second requirement cannot be
easily accomplished by scientists and practitioners not proficient
in Grid programming.

The traditional approach to cope with the problem of easily
exploiting Grids is based on supplying users with programming
APIs such as MPI [44] and PVM [44], which provide standard

and simple interfaces to Grids through the provision of primitives
to execute parts of an application in a distributed and coordi-
nated way. To this end, a user must in principle indicate which
parts of its application can benefit from being parallelized by
inserting in the sequential code that implements his application
appropriate calls to such primitives. Interestingly, APIs like MPI
and PVM mitigate the complexity inherent to writing Grid appli-
cations as they encapsulate common distributed and parallel
patterns behind an intuitive API. However, such APIs still require
users to have a solid knowledge in parallel and distributed
programming, which prevents inexperienced users (e.g. scientists
or engineers) from effectively taking advantage of Grid technolo-
gies [53].

More recently, the notion of ‘‘gridifying’’ sequential applications
[35] has appeared as a fresh approach for rapidly developing and
seamlessly running applications on Computational Grids. Basically,
gridification tools seek to avoid the manual usage of APIs for dis-
tributed and parallel programming within the source code of user
applications and otherwise automatically derive the Grid counter-
parts from the (sequential) compiled code of these applications.
However, materializing the concept is indeed challenging, as it is
intuitively very difficult to automatically transform a sequential
application to run on a Grid and still deeply exploit parallelism
in the application to boost its performance.

In this paper, we describe a novel Java-based gridification
tool called BYG (BYtecode Gridifier), which operates by using some
novel techniques for modifying and parallelizing bytecodes – i.e.

0965-9978/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2011.02.003

⇑ Corresponding author at: ISISTAN Research Institute, Argentina. Tel.: +54 2293
439682x35; fax: +54 2293 439681.

E-mail address: cmateos@conicet.gov.ar (C. Mateos).

Advances in Engineering Software 42 (2011) 172–186

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2011.02.003
mailto:cmateos@conicet.gov.ar
http://dx.doi.org/10.1016/j.advengsoft.2011.02.003
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


the binary code flavor generated by the compiler of the Java
language – to produce efficient Grid applications. Basically, the
idea is to support users who would like to quickly parallelize and
run their sequential codes on a Grid without dealing with typically
complex Grid programming and infrastructure details. Further-
more, the current materialization of BYG targets Java applications
developed under the divide and conquer model, a well-known
technique for algorithm design by which a problem is solved by
systematically dividing it into several subproblems until trivial
subproblems are obtained, which are solved directly. Basically,
upon executing an ordinary application, its bytecode is modified
so that it is able to execute such subproblems in parallel using
the nodes of a Grid.

Preliminary experiments with our tool in a small LAN and re-
source-intensive benchmark applications showed the feasibility of
the approach [37]. Here, we evaluate BYG by gridifying and running
two resource-intensive and real-world applications, namely ray
tracing and sequence alignment, on a wide-area Computational
Grid. The former application is a popular rendering technique that
outputs a picture using an abstract description of a 3D scene, while
the latter is an algorithm for comparing gene sequences, a well-
known problem in bioinformatics. Furthermore, we derived vari-
ants of these applications by manually parallelizing them via the
GridGain [21] and Satin [54] Grid libraries, which are designed for
parallelizing and efficiently executing applications on both clusters
and Grids. The comparisons suggest that BYG offers a convenient
alternative to the problem of easy gridification of sequential appli-
cations, while delivers acceptable performance and fair resource
usage compared to manual parallelism. On the other hand, given
the ever increasing popularity of the Java language for distributed
programming, which is mostly explained by its platform-neutral
bytecode and its very good performance in large-scale distributed
environments compared to traditional languages [47], and the sim-
plicity and versatility of the divide and conquer model, we believe
that BYG is an attractive alternative for painlessly gridifying a broad
range of resource-intensive applications.

The rest of the paper is organized as follows. Section 2 discusses
the most relevant related works. Section 3 overviews BYG and ex-
plains how our approach improves over them. For the most part,
the Section describes the use of BYG in the context of a specific
Grid scheduler library, for which the current version of BYG pro-
vides integration. Section 4 reports the abovementioned experi-
mental evaluation. Section 5 concludes the paper and discusses
prospective future works.

2. Related work

The two common approaches that researchers have been fol-
lowed to address the problem of simplifying the development of
high-performance scientific applications are based on either pro-
viding domain-specific solutions or general–purpose tools. The
first approach aims at providing APIs and runtime supports for tak-
ing advantage of widely-employed scientific libraries from within
applications. Alternatively, the second approach allows users to
implement applications while not necessarily relying on specific
scientific libraries. Both approaches have their pros and cons, as
detailed below.

Among the efforts that follow the first approach is the work by
Baitsch and his colleagues [6], which propose a Java toolkit for
writing numerical intensive applications. The toolkit builds on
the efficiency of numerical Fortran libraries such as BLAS, LAPACK
and NAG by providing Java wrappers that directly access the corre-
sponding native libraries via the Java-to-C interface. In addition,
the toolkit provides a Java-based library that comprise classes for
common vector, matrix and linear algebra operations. Similarly,

f2j [45] is a Fortran-to-Java translator specially designed to obtain
the Java counterpart of the Fortran code of the BLAS and LAPACK
libraries (this latter is codenamed JLAPACK [11]). Moreover, the
jLab environment [43] offers a scripting language similar to Matlab
and Scilab for programming applications that are executed by an
interpreter implemented in Java. This environment supports the
basic programming constructs of Matlab (e.g. operators for manip-
ulating matrixes) and is embedded in a graphical development
environment. Furthermore, the work by Eyheramendy [13] pro-
poses a Java-based library for building Computational Fluid
Dynamics applications. In its current shape, the framework sup-
ports different finite elements formulations for basics mechanical
problems, and some of them can be parallelized by using multi-
threaded programming.

Indeed, the idea of providing domain-specific tools is not only
circumscribed to Java, as evidenced by similar supports for other
programming languages. An example is PyScaLAPACK [12], a
Python interface to ScaLAPACK [40]. ScaLAPACK is a subset of the
LAPACK linear algebra routines but adapted for cluster computing
by using the MPI [44] or the PVM [44] parallel libraries. Moreover,
the work by Mackie [32] proposes a finite element distributed sol-
ver written in the .NET platform. However, the two negative char-
acteristics of the efforts following the approach discussed so far is
that they restrict the kind of applications that can be written and,
except for few cases, they are not capable of exploiting clusters and
Grid infrastructures. Among the tools that do exploit distributed
environments, some works that deserve mention are the Alya sys-
tem [7], which provides several kernels for programming and exe-
cuting various types of Computational Mechanics applications in
parallel on large-scale clusters, and GMarte [2], a middleware for
programmatically building and running task-based applications
on Computational Grids, which has been recently applied to 3D
analysis of large dimension buildings [3].

Precisely, MPI and PVM are the oldest standards for building
general-purpose parallel applications. When using these libraries,
applications are parallelized by decomposing them into a number
of distributed components that communicate via message ex-
change. Several Java bindings for MPI (e.g. mpiJava [25], MPJ Ex-
press [46]), PVM (e.g. jPVM [51]) or both (JCluster [55]) exists.
However, MPI and PVM have also received much criticism [31]
since they are basically low-level parallelization tools that require
solid knowledge on both parallel programming and distributed
deployment from users. In response, there are some Java tools that
attempt to address these problems by raising the level of abstrac-
tion of the API exposed to users and relieving them as much as pos-
sible from performing parallelization and deployment tasks.

Particularly, ProActive [5] is a Java platform for parallel distrib-
uted computing that provides technical services, a flexible support
to address non-functional Grid concerns (e.g. load balancing and
fault tolerance) by plugging configuration external to applications
at deployment time. Moreover, ProActive features integration with
a wide variety of Grid schedulers, and supports execution of Scilab
scripts on dedicated clusters. JavaSymphony [27] is a performance-
oriented platform featuring a semi-automatic execution model that
automatically deals with parallelism and load balancing of Grid
applications, and at the same time allows programmers to control
such features via API calls. Unfortunately, using these API-inspired
parallelization tools unavoidably requires to learn and manually
use their associated APIs within the source code of the (sequential)
user application, which compromises usability since these tasks are
difficult to achieve for an average programmer.

In consequence, some tools aimed at further simplifying the
complexity of the exposed parallel library API and thus improving
usability have been proposed, such as VCluster [56] and DG-ADAJ
[30]. VCluster supports execution of thread-based Java applications
on multicore clusters by relying on a thread migration technique

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 173



Download English Version:

https://daneshyari.com/en/article/569700

Download Persian Version:

https://daneshyari.com/article/569700

Daneshyari.com

https://daneshyari.com/en/article/569700
https://daneshyari.com/article/569700
https://daneshyari.com

