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a b s t r a c t

This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire
debris-flow volume equations from variables associated with a data-driven conceptual model of the
western United States. The search space is constrained using a multi-component objective function that
simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An
optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated
with the debris-flow equations. In contrast to a published multiple linear regression three-variable
equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as
area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many
nonlinear and several dimensionally consistent equations that are unbiased and have less prediction
uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved
when using three variables: average basin slope, total burned area, and total storm rainfall. Further
reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not
a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven
modeling approach can be applied to nonlinear multivariate problems in all fields of study.

Published by Elsevier Ltd.

1. Introduction

The hazardous consequences of rainfall on basins motivate
investigators to study its cause-and-effect on various hydrologic
responses (Friedel, 2008; Gartner, 2008; Biswajeet and Lee, 2010;
Fotopoulos et al., 2010; Scott et al., 2009; Stenson et al., 2011). Of
these responses, debris flows have the most hazardous conse-
quences andmay be one reasonwhy several modeling studies focus
on this response. A review of traditional debris-flow modeling is
provided by Bulmer et al. (2002). To date, the types of modeling
include physical, empirical, and numerical approaches. Early
physical models consider debris flows as a single phase Bingham
(or Coulomb) continuum (Johnson, 1984). Takahashi (1980)
considers particleeparticle interactions but for homogenous
mixtures without internal pressure on the fluid-matrix mixture.
Later, these modeling assumptions are generalized by Iverson
(1997) to include viscous pore fluid in a fluid-solid momentum
transport approach. Because the debris-flow dynamics are
nonlinear, time-dependent, and spatially varying, many
researchers began digital investigations involving empirical and
numerical approaches.

Empirically-based models are developed by fitting equations to
field data for predicting post-fire debris-flow generation at the
outlets of burned basins. While not explicitly describing the physics
of debris flows, these models can provide a first-order prediction of
debris-flow behavior. Some post-fire examples include equations
devised using multiple linear regression (MLR) to predict debris-
flow peak discharge as a function of variation in basin landform,
burn severity, and rainfall (Cannon et al., 2003; Gartner, 2005).
Although peak discharge is successfully used to model extreme
flooding (Friedel et al., 2008) and extreme rainfall events (Friedel,
2008), many researchers consider it too uncertain for predicting
post-fire debris flows (Pierson, 2004). In a recent study by Friedel
(2010), the average range of prediction uncertainty in Colorado
debris-flow peak discharge measurements is determined to span
a factor of about six. For these reasons, there is a shift away from
peak discharge in favor of alternative response variables that
include the percent chance for debris-flow production (Cannon
et al., 2004) and total volume of debris flows (Gartner et al., 2008).

Numerically-based models are also used to predict the timing
and spatial movement of debris flows in response to rainfall on
burned basins (Bunch et al., 2004; Elliott et al., 2005; Mikos et al.,
2006; Rosso et al., 2007; Bathurst et al., 2007; Hsu et al., 2010).
These models differ from standard basin hydrologic models with
the addition of a friction slope. The friction slope term depends onE-mail address: mfriedel@usgs.gov.
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which rheological model is chosen to represent the shear stress of
a non-Newtonian fluid. One numerical modeling application is the
creation of post-fire debris-flow inundationmaps for basins burned
during the 2002 Colorado wildfires (Elliott et al., 2005). In that
study, the numerical problem is solved in two steps. First, the peak-
discharge hydrographs associated with a 100-year storm event are
estimated at the outlets of tributary basins burned as part of the
Coal seam, Hayman, and Missionary Ridge wildfires. Second, the
hydrographs are bulked and then used as input to an unsteady,
unconfined, two-dimensional flow and transport model for pre-
dicting the timing and spatial extent of debris flows. The challenges
in that study illustrate those common to other post-fire numerical
modeling efforts: (1) poor spatial rainfall resolution, (2) poor spatial
resolution of physical properties, (3) assumed homogeneity of the
debris-flow field, (4) little or no streamflow and debris-flow
information at basin outlets to calibrate and validate the model.

Despite the progress made in modeling post-fire debris flows,
there remains a need for additional improvement (Han et al., 2007).
This is particularly true with respect to the development of alter-
native nonlinear models and quantification of prediction uncer-
tainty. Over the past decade, data-driven techniques have been
introduced as alternative tools in hydrology (Dawson and Wilby,
2001; Han et al., 2007). One data-driven technique is the self-
organizing map. The self-organizing map is a type of unsuper-
vised neural network that maps nonlinear data vectors from a high-
to low-dimensional model output space (Kohonen, 2001). Some
applications include investigating the spatial and temporal trends
in basin water quality data (Lischeid, 2003), estimating design
hydrographs for ungauged basins (Lin andWu, 2007), assessing the
vulnerability of rainfall-induced debris flows (Lu et al., 2007), and
developing post-fire landscape models at multi-state (regional)
scales (Friedel, 2011). A more comprehensive review of applications
in water-resources is provided by Kalteh and Berndtsson (2008).
A second data-driven technique is symbolic regression. Symbolic
regression is one type of genetic programming (GP) that searches
for empirical relations using a specific form of the evolutionary
algorithm (Koza, 1992, 1999). These algorithms share the common
property of applying selection, variation, and reproduction to
a population of structures that undergo evolution. Recent applica-
tions include the evolution of equations to estimate soil hydraulic
properties (Parasuraman et al., 2007), estimate suspended sedi-
ment concentration (Aytek et al., 2008), forecast short-term
streamflow with global climate change implications (Makkeasorn
et al., 2009), and to project climate change impacts on landlocked
salmon (Tung et al., 2009).

A common interest in the field of hydrology is the estimation of
prediction uncertainty (Vecchia and Cooley (1987; Christensen
and Cooley, 1999a,b; Cooley, 2004; Friedel, 2005; Friedel,
2006a,b; Gallager and Doherty, 2007; Friedel et al., 2008; Yu
et al., 2008; Sreekanth and Datta, 2011). Part of the motivation
for this analysis is the recognition that empirical (and numerical)
models are non unique. That is, there are many alternate combi-
nations of model coefficients (or parameter values) that can satisfy
the same best-fit criteria. Because predictions made using a given
model represent one set of many, there is range over which they
vary. In this study, the following objectives focus on burned basins
in the western United States: (1) evolve a set of nonlinear multi-
variate debris-flow volume equations; and (2) quantify and
compare model statistics and prediction uncertainty among these
nonlinear equations to a published linear equation. This study
extends the work of Gartner (2008) who sought to devise debris-
flow equations based on the traditional multiple linear regression
approach. We demonstrate the novel application of genetic
programming to evolve nonlinear post-fire debris-flow volume
equations from variables associated with a data-driven conceptual

model of the western United States (Friedel, 2011). In addition to
providing new equations, this study illustrates the applicability of
an inverse technique for estimating nonlinear post-fire debris-
flow prediction uncertainty. The general nonlinear modeling
approach can be applied to multivariate problems in all fields of
study.

2. Conceptual models and data

The selection of variables for use in this study is based on
a conceptual post-fire landscape model provided by Friedel (2011).
In that study, conceptual models are delineated at the multi-state
(regional) scale using data from six hundred burned basins in nine
western states (Gartner et al., 2005), the self-organizing map
technique (Kohonen, 2001), the partitive cluster technique
(Vesanto and Alhoniemi, 2000), and the Davies-Bouldin criteria
(Davies and Bouldin, 1979). Given that the conceptual model
variables are delineated in terms of probability (low, moderate,
high), the model selection process proceeds by successive
screening for variables with high (or moderate) likelihood in three
categories.

1.Runoff-initiated debris-flow volume discharge (the response
variable). Models characterized by a high likelihood for flooding
or nonevents are dropped from consideration.

2. Occurrence in California, Colorado, and Utah. Models charac-
terized by debris flows occurring in an alternate combination of
states are dropped from consideration.

3. Susceptibility (explanatory) variables in common with a linear
debris-flow volume equation (Gartner et al., 2008) for western
United States. Models that are not characterized by a high
likelihood for basin slopes greater or equal to 30 percent, burn
severity characterized as area burned moderate plus high, and
total storm rainfall are dropped from consideration.

Of the eight conceptual regional landscape models in Friedel
(2011), only number five (RLM-5) depicts basin debris-flow
response and susceptibility variables that are similar to those
used in the linear debris-flow volume equation presented by
Gartner et al. (2008):

lnV ¼ 0:59*lnðG30=1e6Þ
þ 0:65ðBMH=1e6Þ1=2*ðTSR*1000Þ1=2þ7:21 (1)

where V is the debris flow total volume in m3; G30 is the basin area
with slopes greater or equal to 30 percent in m2; burn severity
characterized as area burned moderate plus high, in m2; and TSR is
the total storm rainfall in m. A summary of the conceptual model is
given below.

RLM-5: This conceptual regional landscape model includes
mostly Montana basins but also some basins from Arizona, Cal-
ifornia, Colorado, and Utah. These basins typically are underlain by
metamorphic and sometimes sedimentary rocks that have a high
likelihood for post-fire runoff-initiated debris-flow events. The
independent land surface features that best characterize this region
are small basins with medium gradients and relief ratio that are
highly ruggedized; and medium values of basin gradients
exceeding 30 and 50 percent. The geologic texture is best charac-
terized by high variable values of organic matter, permeability, soil
thickness, and hydrologic group; and high values of clay content,
erodibility, and soil thickness. The rainfall variables include high
values of total storm amount, storm duration, average storm
intensity, and recurrent rainfall; and a medium likelihood for post-
fire medium to high and high burn severity areas.
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