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a b s t r a c t

Few studies attempt to model the range of possible post-fire hydrologic and geomorphic hazards because
of the sparseness of data and the coupled, nonlinear, spatial, and temporal relationships among land-
scape variables. In this study, a type of unsupervised artificial neural network, called a self-organized
map (SOM), is trained using data from 540 burned basins in the western United States. The sparsely
populated data set includes variables from independent numerical landscape categories (climate, land
surface form, geologic texture, and post-fire condition), independent landscape classes (bedrock geology
and state), and dependent initiation processes (runoff, landslide, and runoff and landslide combination)
and responses (debris flows, floods, and no events). Pattern analysis of the SOM-based component planes
is used to identify and interpret relations among the variables. Application of the DavieseBouldin criteria
following k-means clustering of the SOM neurons identified eight conceptual regional models for
focusing future research and empirical model development. A split-sample validation on 60 independent
basins (not included in the training) indicates that simultaneous predictions of initiation process and
response types are at least 78% accurate. As climate shifts fromwet to dry conditions, forecasts across the
burned landscape reveal a decreasing trend in the total number of debris flow, flood, and runoff events
with considerable variability among individual basins. These findings suggest the SOM may be useful in
forecasting real-time post-fire hazards, and long-term post-recovery processes and effects of climate
change scenarios.

Published by Elsevier Ltd.

1. Introduction

Peak discharge can increase following a wildland fire because of
the commonly exacerbated runoff response. For example, field
measurements (Morris andMoses,1987; DeBano, 2000; Martin and
Moody, 2001) and numerical modeling (Beeson et al., 2001; Elliot
et al., 2005; Seibert et al., 2010) of unit-area peak discharge
reveal increases up to several hundred times over pre-fire rates.
Such potentially hazardous peak discharge rates reflect increases in
surface runoff that are attributed to reduced rainfall infiltration
associated with drying of soil, formation or enhancement of water-
repellent (hydrophobic) soils (DeBano, 2000; Robichaud, 2000),
decreases in rainfall storage by removal of tree canopy and soil-
mantling litter and duff, and increases in source contributing
areas (Benavides-Solorio andMacDonald, 2001; Martin andMoody,
2001; Cannon and Gartner, 2005). In addition to changing the local
hydrologic response to rainfall, high temperatures associated with

burning can cause physical changes in soil that enhance its erod-
ibility (Benavides-Solorio and MacDonald, 2001; Odion and
Hanson, 2006.). Over time, the decay of burned plant and tree
roots can provide preferential pathways for rainfall infiltration,
leading to temporary increases in pore-water pressures (Anderson
et al., 2009). Root decay also can reduce the soil cohesion (Uchida
et al., 2001), and the combination of increased pore pressures and
decreased cohesion can result in landslide failures (Jackson and
Roering, 2009).

Rainfall-initiated runoff and landslide failures are the primary
processes leading to a post-fire hydrologic and geomorphic
response. In steep upper-basin mountain basins, overland and
channel flows travel at high velocities (Cannon and Gartner, 2005)
resulting in significant erosion (Meyer et al., 2001), sediment
transport, and flooding (Gartner et al., 2005; Coe et al., 2008a).
Progressive bulking of runoff by sediment eroded from hillslopes
and channels can result in flows with broad ranges in sediment
concentrations. A debris flow is a spatially continuous rapidly
moving mass of water and material composed mainly of coarse
debris; typically 20e80% of the particles are greater than 2 mm in
diameter (Pierson and Costa, 1987). Hyperconcentrated flowsE-mail address: mfriedel@usgs.gov.
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occupy the boundary between debris and normal stream flows, and
they are a mixture of water and sediment with concentrations less
than 80% but greater than about 40% by weight (Hutchinson, 1988).
In addition to the development of debris flows through progressive
sediment bulking, debris flows are observed to mobilize from
discrete landslide failures on hillslopes (Meyer and Wells, 1997;
Sanchez-Martos et al., 2002), or by a combination of these two
processes (Cannon, 2001). Cannon et al. (1998), however, found
that considerably more material can be contributed to debris flows
fromhillslope runoff and channel erosion than from landslide scars.

The observation that a hyperconcentrated flow can develop as
floodwater entrains sediment, or conversely, as a debris flow is
diluted by water (Wieczorek et al., 1989), underscores the transient
and spatial nature of potential post-fire responses to rainfall.
Cannon (2001) identified transitory threshold locations within
basin channels, where sufficiently eroded material is incorporated
(relative to the volume of surface runoff) to generate debris flows
that persist down the length of a channel. Understanding the
relations between factors governing a transitory threshold is
challenging because debris flows are not always generated from all
incised channels (Cannon and Gartner, 2005). Likewise, under-
standing the post-fire related landslide initiation process (Klock
and Helvey, 1976; Swanson, 1981; Wondzell and King, 2003) is
important but challenging due to a lack of well-controlled data and
complex interaction between gradients, pore-water pressures, and
physical properties of the near-surface materials (Cannon and
Gartner, 2005).

To date, investigations of post-fire hydrologic and geomorphic
hazards typically examine relations and perform modeling
between a single initiation process or response and limited number
of explanatory variables with no consideration given to prediction
uncertainty (Cannon et al., 2003a, 2004; Elliot et al., 2005; Gartner
et al., 2008). According to Cannon and Gartner (2005), the
susceptibility of a burned basin to various initiation processes
(landslides, runoff, and landslide and runoff combination) and
responses (debris flows, sediment flows, and flooding) is compli-
cated involving interaction among multiple variables from inde-
pendent landscape categories (climate, land surface form, geologic
texture, and post-fire condition), and independent categorical
classes (bedrock geology and location). Also, in some settings the
burning of a basin may do little to change existing hillslope
processes (Larsen et al., 2006). The inability to describe nonlinear
and coupled interaction in this multivariate system contributes to
the comparatively poor predictability (with respect to
nonuniqueness and uncertainty) associated with recent empirical
and numerical modeling efforts discussed by Friedel (2010).
Consequently, new tools are needed to improve our understanding
of dominant post-fire processes, and predict their responses and
quantify uncertainty following rainfall on burned basins.

Given the potentially large number of, and complex interaction
among, variables in a burned basin, it is necessary to implement
advanced multivariate knowledge extraction and prediction tools.
Multivariate methods, such as principal component analysis
(Christophersen and Hooper, 1992), factor analysis (Suk and Lee,
1999) and hierarchical clustering (Vesanto and Alhoniemi, 2000),
are often used to reduce the dimensionality of data sets for system
analysis. As traditionally used, however, these methods reduce
complexity assuming linear combinations of the data variables. The
usefulness of factor analysis is considered dubious because the
factors are not directly observable and results cannot be used in
other analytical studies. In hierarchical clustering, the most
important attributes defining the branches of a clustering tree are
not readily recognizable and important patterns can be lost due to
its deterministic nature and high-dimensionality of data. In addi-
tion, these methods do not work with disparate and sparsely

populated data, and they cannot be used to perform estimation or
forecasting. One nonlinear alternative for analysis and modeling of
multivariate data is artificial neural networks. Artificial neural
networks are sometimes preferable over traditional modeling
approaches (Hong and Rosen, 2001) because: (1) they can accom-
modate the nonlinearities of a system; (2) they can accommodate
irregular, sparse, and noisy data; (3) they can be quickly and easily
updated; and (4) they can interpret disparate information from
multiple and mixed types of variables.

Artificial neural networks are a generalized modeling group that
includes supervised and unsupervised methods. Supervised artifi-
cial neural networks have been used in predicting the rainfall-
response on debris flows (Chang and Chao, 2006; Pak et al.,
2009), landslides (Pradhan and Lee, 2010), and flooding (Kalteh
et al., 2008). The successful application of supervised training
methods, however, is dependent on accurately specifying the
weights and output layer of the network prior to its deployment.
One alternative that requires no a priori knowledge of underlying
relations or designation of an output layer is the self-organizing
map (SOM) technique (Kohonen, 2001). This vector quantization
technique uses an unsupervised and competitive learning
algorithm to identify patterns in the data (Kohonen, 2001).
Applications of SOM pattern analysis can be found in ecological
(Shanmuganathan et al., 2006), geomorphological (Ehsani and
Quiel, 2008), hillslope weathering (Iwashita et al., 2011), ground-
water (Hong and Rosen, 2001), and surface-water (Lischeid,
2003; Lu et al., 2007) research. In addition to pattern analysis, the
vector basis of a SOM provides the means for estimation and
prediction (Wang, 2003). SOM estimation applications can be
found in chemical process (Rallo et al., 2002) and surface-water
hydrology (Lin and Wu, 2007; Kalteh and Berndtsson, 2007;
Kalteh and Hjorth, 2009) research. For a comprehensive review of
SOM applications in water resources, the reader is referred to
Kalteh and Berndtsson (2007) and Maier et al. (2010).

In this study, we explore the usefulness of a SOM analysis to help
understand the effects of climate variability on hydrologic and
geomorphic hazards across the post-fire landscape in western
United States (U.S.). The objectives are to: (1) identify dominant
post-fire relations among published multivariate data from 540
burned basins; (2) identify conceptual multivariate post-fire
regional models from these data for future empirical model
development; (3) quantify SOM bias and uncertainty in simulta-
neous post-fire predictions of initiation processes (runoff, landslide,
and runoff with landslide) and responses (none, flooding, and
debris flows); and (4) forecast the simultaneous effects of wet and
dry climate scenarios on post-fire initiation processes (runoff,
landslide, and runoff with landslide) and responses (none, flooding,
and debris flows) across the burned landscape. This study uses
a SOM approach for modeling which has not previously been done
in wildfire studies. It is also the first to attempt simultaneous
predictions of multiple dependent variables across a post-fire
landscape. This study relies on a data set compiled by Gartner
et al. (2005) from field measurements and observations for
burned basins in nine states.

2. Method

2.1. Self-organizing map technique

The SOM technique is a type of unsupervised neural network
that learns to project, in a nonlinear manner, from a high-
dimensional input layer to a low-dimensional discrete lattice of
neurons called the output layer (Kohonen, 2001). The algorithm is
iterative and after assigning a prototype (weight) vector to each
neuron in the output layer it follows these steps:
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