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a b s t r a c t

In this paper, a method for environmental observation network design using the framework of spatial
modeling with copulas is proposed. The methodology is developed to enlarge or redesign an existing
monitoring network by taking the configuration which would increase the expected gain defined in
a utility function. The utility function takes the estimation uncertainty, critical threshold value and gain-
loss of a certain decision into account. In this approach, the studied spatial variable is considered as
a random field in where variations in time is neglected and the variable of interest is static in nature. The
uniqueness of this approach lies in the fact that the uncertainty estimation at the unsampled location is
based on the full conditional distribution calculated as conditional copula in this study. Unlike the
traditional Kriging variance which is a function of mere measurements density and spatial configuration
of data points, the conditional copula account for the influence from data values. This is important
specially if we are interested in purpose oriented network design (pond) as for example the detection of
noncompliance with water quality standards, the detection of higher quantiles in the marginal proba-
bility distributions at ungauged locations, the presence or absence of a geophysical variable as soil
contaminants, hydrocarbons, golds and so on. An application of the methodology to the groundwater
quality parameters in the South-West region of Germany shows its potential.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An observation network is usually required to measure specific
environmental variables to evaluate compliance with regulatory
standards. In this context, statistical methods can be applied to
provide a reasonable degree of assurance that certain criteria is met
as well as to estimate the impact of additional measurements on
error reduction before the measurement are taken. Based on that
one can decidewhere to collect additional measurement so that the
objectives of monitoring are met in the most cost-effective way
(Kitanidis, 1997).

Different design strategies are proposed in the literature.
Entropy based approaches can be dated back to Lindley (1956) and
Bernardo (1979). Caselton and Zidek (1984), Guttorp et al. (1993)
and Zidek et al. (2000) have developed the maximum entropy
design approach, where entropy is used as a measure of the
uncertainty about the variable of interest. The design/sampling
criterion is to maximize the amount of variability of the samples so
that conditionally on the sample the unsampled population has

minimum variability (Shewry and Wynn, 1987). In this context,
doable optimization algorithmwas developed for Gaussian process.
In Keats et al. (2010), a Bayesian approach is applied to solve the
inverse problem of isolating the source of an unknown contaminant
emission, where Markov chain and Monte Carlo and a posterior
sampling technique are used to calculate the expected information
over a grid of potential detector locations. Geostatistical based
approaches are also available, e.g., Cressie (1991), Mardia and
Goodall (1993), Journel (1994). In these approaches, spatial
dependence is described by the variogram and the optimal design of
the observation network is obtained basically by minimizing the
related estimation variance, which is expressed by the Kriging
variance. The variogram and Kriging variance is a mere function of
measurement density and spatial configuration of the data points,
but is not dependent on the variable values. The latter factor cannot
be neglected in many cases. For example, high concentration data
points might be more dependent than the low ones and this
difference propagates to the estimation uncertainties of different
values. These facts have important consequences for network
design, especially for extreme events detection (Chang et al., 2007).

The problem addressed above brings the genesis of the copula
based approach described in this paper. As apposed to the
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traditional geostatistical tools, copula enables to model the
dependence as a function of the variable values, thus the difference
in estimation uncertainties between different quantiles can be
reflected. Another advantage of copula is that it captures the pure
dependence without the influence from marginal distributions
which often cause a problem for traditional geostatistical analysis
(Bárdossy, 2006). Recently it has become increasingly popular in
environmental sciences, to name a few, Grimaldi and Serinaldi
(2006), Gebremichael and Krajewski (2007), Bárdossy and
Pegram (2009), AghaKouchak and Bádossy (2010), Klein et al.
(2010) and Salvadori and Michele (2010). A comprehensive refer-
ence can be found in http://www.stahy.org. Readers who are
interested in more details of copula theory can refer to Nelsen
(1999), Genest and Favre (2007) and Salvadori et al. (2007).

The first step in the proposed approach is to consider a random
field in where variations in time can be neglected and the variable
of interest is static in nature. As apposed to the traditional geo-
statistical tools, the spatial dependence of the natural variable
under interest is modeled using copulas. The uncertainties in the
estimation of unsampled locations are described with the help of
the conditional copula. False positive or negative decisions are
penalized with a certain cost, while right decisions are favored with
a certain gain. Then a utility function is defined such that the gain
or loss of a certain decision is weighted by the conditional copula of
the possible state of nature of the variable under interest. The
candidate location which yields the highest utility for the whole
estimation grid will be selected as the best place for adding a new
measurement.

In the following sections, first the proposed methodology is
described in details. After that a synthetic example is presented to
better explain the methodology. Then a case study on redesigning
part of the existing observation network of groundwater nitrate
concentration in the south-western region of Germany is discussed
to show the potentialities of this approach. Final remarks about this
study are drawn at the end.

2. Description of the proposed methodology

We denote Z(s) as a spatial random field of interest indexed by
location s in a two dimensional space and seS, where S is the study
domain. In a purpose oriented network design, we are interested in
measuring at locations where the value of the variable Z(s) is above
a certain threshold b such that:

qðsÞ ¼
�
q0ðsÞ ZðsÞ < b
q1ðsÞ ZðsÞ � b

(1)

where q(s) is a dichotomic spatial random field representing the
state of nature at each location s.

From the point of view of decision theory, we propose a very
simple approach by using decision theory tools. At any location s,
we can take the decision di of taking water or not depending on our
judgment onwhether the unknown location gets a value below the
threshold b or not. The positive decision (taking water) is denoted
as d0, and the counterpart is denoted as d1. We can define a utility
function Us(qi, di), depending on the state of nature qi(s) at each
location and the decision to be taken. The term utility is a measure
of the relative satisfaction from consumption of various goods and
services or attainment of goals (Ingersoll, 1987). The defined utility
function for our case is presented in Table 1.

The entries of the utility matrix kij can be defined in relative units.
Negative kij values represent costs, while positive ones represent
gains.Note that thediagonal elements k00 and k11 correspond to gains
if a correct decision is taken, while the off diagonal ones correspond
to losseswhen awrong decision ismade. It should bementioned that

the gains and costs can be very different for different cases. For
instance, exceeding a threshold of a certain pollutant concentration
in groundwater can have a severe adverse effect if used for drinking
purpose. On the other hand, to decide not to use the water, even if in
reality, the threshold is not exceeded leads, generally, to a small loss.
But in the case of gold mining, the reverse holds true, i.e., the loss of
deciding not to mine but actually there is gold might be higher than
deciding to mine but no gold is present. The expected utility at each
location s for a certaindecisiondi can thenbe calculatedwith the help
of the coefficients of utility function as:

EðUsjdiÞ ¼ ki0pðqðsÞ ¼ q0Þ þ ki1pðqðsÞ ¼ q1Þ i ¼ 0;1 (2)

The decision should be taken based on the estimated probability
pðqðsÞ ¼ q0Þ. If it exceeds a certain limit pl then d0 is taken, else d1
will be taken. That means if the probability of pollutant concentra-
tion or gold grade being below the critical threshold is big enough so
that the risk of taking water is sufficiently low or it is not worth
mining, the decision d0 is chosen and vice versa. The aforemen-
tioned terms positive decision andnegative decision are relative to the
specific designpurpose. In the project ofwater quality control, if p ¼
pðZðsÞ < bÞ is greater than a certain limit, the decision of usingwater
will be madewhichmeans d0 indicates a positive decision.While in
theproject of goldmining, in this case the decisionof notminingwill
be taken, and hence d0 indicates a negative decision. Since we are
mainly dealing with environmental variables, in the following, we
will comply with the definition for the water quality control case.

The value of the limit pl should be specified according to the
principle that the expected utility is maximized. That means, if
pðqðsÞ ¼ q0Þ > pl then the expected utility of the positive decision
is greater than that of the negative decision:

k00pþ k01ð1� pÞ>k10pþ k11ð1� pÞ (3)

else if pðqðsÞ ¼ q0Þ < pl then:

k00pþ k01ð1� pÞ < k10pþ k11ð1� pÞ (4)

For pðqðsÞ ¼ q0Þ ¼ pl, the utilities of the two opposite decisions
should be equivalent:

k00pþ k01ð1� plÞ ¼ k10pþ k11ð1� plÞ (5)

which leads to:

pl ¼
k11 � k01

k00 � k01 � k10 þ k11
(6)

Note that a continuous utility function depending on the exact
value could also be considered in a similar manner. In order to take
the appropriate decision, the probability P(Z(s) < b) at an unsam-
pled location have to be estimated from the available observations.
This can be done by applying appropriate interpolation procedures
of the random field Z(s) at a given set of unsampled locations
denoted by S* ¼ (s*1, ., s*N). For this purpose, the approach
described in Bárdossy and Li (2008) is applied. The probability
P(Z(s) < b), i.e., p(q(s) ¼ q0) required by Equation (2) at the
unsampled location is calculated as the conditional copula at the
unsampled locations Csj*, n(uj*ju1, ., un) for j ¼ 1, ., N, u*j ¼ FZ(b)
with FZ($) denoting the univariate empirical distribution of the
dataset onwards, conditioned on the n observations.

Table 1
Utility matrix.

Us(qi, di) q0 q1

d0 k00 k01
d1 k10 k11
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