
Short communication

Statistical downscaling of rainfall data using sparse variable selection methods

A. Phatak a,b,*, B.C. Bates a,c, S.P. Charles a,d

aCSIRO Climate Adaptation Flagship, Australia
bCSIRO Mathematical & Information Sciences, Private Bag 5, Wembley, WA 6913, Australia
cCSIRO Marine & Atmospheric Research, Private Bag 5, Wembley, WA 6913, Australia
dCSIRO Land & Water, Private Bag 5, Wembley, WA 6913, Australia

a r t i c l e i n f o

Article history:
Received 15 September 2009
Received in revised form
4 May 2011
Accepted 8 May 2011
Available online 14 June 2011

Keywords:
Statistical downscaling
Variable selection
L1-norm
Sparse variable selection
Logistic regression

a b s t r a c t

In many statistical downscaling methods, atmospheric variables are chosen by using a combination of
expert knowledge with empirical measures such as correlations and partial correlations. In this short
communication, we describe the use of a fast, sparse variable selection method, known as RaVE, for
selecting atmospheric predictors, and illustrate its use on rainfall occurrence at stations in South
Australia. We show that RaVE generates parsimonious models that are both sensible and interpretable,
and whose results compare favourably to those obtained by a non-homogeneous hidden Markov model
(Hughes et al., 1999).

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

General circulation models (GCMs) constitute the most impor-
tant set of tools for encoding our understanding of the mechanisms
that govern large-scale climate patterns (Murphy et al., 2004). First,
they provide important evidence towards the conclusion that
increases in anthropogenic forcing are responsible for the observed
increase in globally averaged temperatures since the mid-20th
century (Solomon et al., 2007 x9.4.1.2). Second, they are used to
generate scenarios describing possible future climates, information
that is needed to facilitate adaptation and mitigation of the effects
of climate change. Nevertheless, for local impacts studies, the
spatial resolution of GCMs is still too coarse, hence the widespread
use of downscaling methods to bridge the gap between synoptic-
scale information from GCMs and the spatially and temporally
fine scale information such as daily rainfall required in, for example,
hydrological studies.

Downscaling methods are usually classified into two groups:
dynamical downscaling and statistical downscaling (SD) (Wilby
and Wigley, 1997). Dynamical downscaling relies on the use of

regional climate models to produce outputs at higher resolutions.
By contrast, SD methods construct empirical models that relate
a small set of coarse-scale predictor variables to local climate var-
iablesdthe predictandsdsuch as temperature or rainfall occur-
rence and amounts. There are many different types of statistical
downscaling methods (Fowler et al., 2007). They are all based on
the implicit assumption that (a) the predictors that have been
chosen, and their relationships to the predictands, are physically
meaningful; and (b) these relationships will hold in the future in
a changed climate.

The choice of predictors is also crucial but, as Fowler et al. (2007)
point out, there is often “little consensus on the most appropriate
choice ..” The recent review of methods for precipitation down-
scaling by Maraun et al. (2010) suggests some desirable properties
of predictors for statistical downscaling: that they be informative,
well simulated by dynamical models, and capture the effects of
climate change. In typical downscaling applications, the set of
potential predictors comprises atmospheric variables obtained over
a grid. Hence, given the ensemble of atmospheric variables and the
grid identified by the investigator as being potentially relevant for
downscaling, the selection problem involves choosing a subset of
atmospheric variables and their grid location(s) for use in a down-
scaling model. For the most part, the selection of predictors in any
given downscaling application combines expert knowledge with
measures such as correlations and partial correlations between the
predictors and predictand, and often involves iteratively fitting
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models with different sets of predictors to find the most useful one
(e.g. Hughes et al., 1999; Chandler and Wheater, 2002; Wilby et al.,
2002; Chandler, 2005). Using such methods, however, it is only
possible to consider a relatively small subset of predictors. More
recently, Hessami et al. (2008) described an automatic variable
selection method based on backward stepwise regression, but they
too limited the ensemble of predictors to about 30, fromwhich five
were selected. Other methods for selecting small subsets of vari-
ables include genetic algorithms (Traveria et al., 2010) and the
semi-automatic method of Prasad et al. (2010), which consists of
ranking individual variables and then using all-subsets selection.

An alternative to selection of individual variables from a spatial
field is to employ derived variables such as principal components
(PCs) or canonical variates (for example, Schoof et al. (2009)). These
derived variables can also be used for dimension reduction and
then in regression (PCs) or canonical correlation analysis, and they
may, in some instances, provide a meaningful physical interpreta-
tion and identify modes of variability (though not alwaysdsee, for
example, the caveats in Zwiers and Von Storch (2004) and
Hannachi et al. (2007)).

In this short communication, we describe the use of a fast,
sparse variable selection method for selecting atmospheric
predictors in a logistic regression model for downscaling daily
rainfall occurrence at stations in South Australia. The method,
known colloquially as RaVE (for Rapid Variable Elimination), is due
to Kiiveri (2008), and although it is related to implicit variable
selection methods such as LASSOdleast absolute shrinkage and
selection operator (Tibshirani, 1996)dit provides a much more
flexible framework for model fitting and variable selection. We
illustrate the method by predicting daily rainfall occurrence from
a set of 392 potential predictors (7 variables at 56(¼ 8 � 7) grid
points), and show that it generates parsimonious models that are
both sensible and interpretable and whose results compare
favourably to those obtained by a non-homogeneous hidden
Markov model (NHMM) (Hughes et al., 1999; Charles et al., 2004).
We also note that RaVE can be used to select which PCs to use in, for
example, a principal component regression.

2. Logistic regression and sparse variable selection

2.1. Logistic regression

Logistic regression is one of a large class of generalized linear
models (McCullagh and Nelder, 1989), and is often used to model
the probability of rainfall occurrence as a function of predictors in
statistical downscaling applications (e.g. Chandler and Wheater,
2002; Furrer and Katz, 2007; Hessami et al., 2008). When the
presence or absence of rainfall in the previous q time intervals is
included as a covariate, logistic regression can be used to fit a binary
Markov chain of order q. Moreover, by including additional
predictors such as atmospheric variables from reanalysis data or
GCM outputs, a non-homogenous Markov chain can be fitted
(Fahrmeir et al., 2001, Chapter 6), and hence the transition proba-
bilities will be modulated by the outputs included in the model.

We denote rainfall occurrence as Y, and following convention,
let Y¼ 1 if it rained on a given day, Y ¼ 0 if it did not. Then, the
binary logistic regression model can be written as

log
�

pðY ¼ 1jxÞ
1� pðY ¼ 1jxÞ

�
¼ logitðpYÞ ¼ xTb (1)

where x¼ (1, x1, x2,., xp)T is a (pþ 1)� 1 vector of covariates xj, j¼ 1,
2,., p, whichmay include, for example, atmospheric variables such
as geopotential height, specific humidity, and dew-point tempera-
turedepressionat differentpressure levels,mean sea-level pressure,

but also previous values of rainfall Yte1, Yte2,., Yteq; p(Y¼ 1jx) is the
probability of rain given the covariates included in the model; and
b is a (p þ 1) � 1 vector of coefficients to be estimated.

2.2. Shrinkage, or regularization, methods

When the number of covariates is potentially very large and
they are highly correlated, estimation methods such as least
squares can lead to predictions that have a large variance. As Hastie
et al. (2001, p. 55) point out, however, “prediction accuracy can
sometimes be improved by shrinking or setting some coefficients to
zero.” Shrinkage, or regularization, means reducing the size of the
coefficients so that they are ‘pulled’ towards zero, whereas setting
some coefficients to zero implies variable selection. Examples of
commonly used regularization methods include ridge regression
and principal component regression, and methods that combine
both shrinkage and variable selection include LASSO (Tibshirani,
1996) and RaVE (Kiiveri, 2008). In addition to reducing variance,
these methods also provide information that assists in interpreting
the results: principal components, for example, that provide
a visual summary of the data, or a reduced set of variables that
exhibit the strongest effect on the predictand of interest.

The vector of coefficients in eq. (1) is usually estimated by
maximum likelihood; in the case of LASSO, the log-likelihood is
penalized by the addition of an L1 penalty term of the form
lSp

i¼1jbij, where l> 0 is known as the shrinkage, or regularization,
parameter which controls both variable selection and the amount
of shrinkage. The LASSO solution can also be interpreted as the
Bayes posterior mode under independent double-exponential
(Laplace) priors for the coefficients (Tibshirani, 1996), i.e., p(bi) f
exp(e ljbij); hence, the L1 penalty in the penalized likelihood
corresponds to the negative log-prior.

2.3. Rapid variable elimination (RaVE)

The approach we adopt here, which is due to Kiiveri (2008), can
also be interpreted in the penalized likelihood and Bayesian
frameworks. However, by contrast with the original formulation of
LASSO (Tibshirani, 1996), the prior distribution of the coef-
ficientsdand hence the penalty termdis derived in an explicitly
hierarchical manner. It reflects the assumption that most of the
elements of b may be zero, or at least very small, and it can be
specified in two parts as

bi

���v2wN
�
0; v2

�
; v2wGaðk; bÞ (2)

This hierarchical prior is known as a ’normal-gamma’ (NG) prior. In
the first part of the specification, the ith coefficient has a normal
distribution with mean zero and variance n2; in the second, the
variance n2 has a gamma density with shape k and scale b. The
marginal distribution of the bi can be calculated asR
n2 pðbijn2Þpðn2Þdn2, and this leads to a prior of the form

pðbiÞ ¼
"
2ð0:5�kÞffiffiffi
p

p
GðkÞ

#
dKð0:5�kÞðdjbijÞ
ðdjbijÞð0:5�kÞ ; d ¼

ffiffiffi
2
b

r
(3)

where K denotes a modified Bessel function of the third kind
(which is a rapidly decaying function), and G denotes the gamma
function. For fixed values of the hyperparameters k and b (see
below), an expectation-maximization algorithm is used to obtain
maximum a posteriori estimates of the coefficients bi. Algorithmic
details may be found in Kiiveri (2008). Compared to the double-
exponential prior in LASSO, the NG prior yields sparser models
and gives rise to a wider range of shrinkage behaviour (Griffin and
Brown, 2010).
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