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a b s t r a c t

This study presents a new interactive procedure for supporting Decision Makers (DMs) in environmental
planning problems involving large, process-based, dynamic models and many (more than two) con-
flicting objectives. Because of such features of the model, computationally-onerous simulations are the
only feasible way of analysis, while the multi-objective nature of the problem entails the combined use of
optimization techniques and appropriate tools for the visualization of the associated Pareto frontier. The
procedure proposed is based on the iterative improvement of the current best compromise alternative
based on interactions with the DM. At each iteration, the DM is informed about the Pareto frontier of
a local multi-objective optimization problem, which is generated by linearizing the response surfaces
that describe the objectives and constraints of the original planning problem. Interactive visualization of
the multi-dimensional Pareto frontier is used to support the DM in choosing the new best compromise
alternative. The procedure terminates when the DM is fully satisfied with the current best compromise
alternative. The approach is demonstrated in Googong Reservoir (Australia), which is periodically
affected by high concentrations of Manganese and Cyanobacteria. Results indicate that substantial
improvements could be observed by simply changing the location of the two mixers installed in 2007
and adding another pair of mixers.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Contemporary environmental decision-making is faced with
a twofold challenge: the complexity of the physical domain in
which decisions are taken, where most of the processes are
dynamic, spatially-distributed and highly non-linear, and the
heterogeneousness of the socio-economiceecologic context they
affect, which usually involves multiple (often many), conflicting
objectives. Multi-objective decision methods have been recognized
as an important tool to support Decision Makers (DMs) in envi-
ronmental planning and management (e.g. Janssen (1992);
Lahdelma et al. (2000); Soncini-Sessa et al. (2003)). In general,
the overall goal is to determine the Best Compromise Alternative
(BCA, see Castelletti and Soncini-Sessa (2006)) among a number of
available decision options according to the DM’s preference, that is
to find the alternative that satisfies the DM the most, considering

the multiple objectives that have been identified by relevant
stakeholders (Castelletti et al., 2008) to be the (only) issues on
which a decision should be made. Assuming a rational DM, the BCA
must be a Pareto-efficient alternative and therefore its determi-
nation involves the solution of aMulti-Objective (MO) optimization
problem.

Awide variety of methods exists to determine the BCA and these
are usually classified (Hwang and Masud, 1979) as a-priori, inter-
active (or progressive) and a-posteriori methods, accordingly to the
stage at which the DM is involved in the process.

1.1. A-priori decision methods

A-priori methods are based on the elicitation and articulation of
the DM preference structure and its subsequent use to transform
the MO problem into a Single-Objective (SO) problem, whose
solution is assumed to be the BCA. They include both normative
approaches, such as theMulti Attribute Utility (Value) Theory (MAU
(V)T) developed by Keeney and Raiffa (1976), and heuristic
approaches like the Analytic Hierarchy Process (AHP) proposed by
Saaty (1980) and goal programming (Charnes et al., 1955). A-priori
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methods have been extensively experimented on environmental
decision-making, including water resources (e.g. Keeney andWood
(1977); Agha (2006); Arnette et al. (in press)), fishery (e.g. Pascoe
and Mardle (2001); Herath (2004)), forestry (e.g. Tecle et al.
(1995); Hayashida et al. (2010)), and conservation planning (e.g.
Moffett et al. (2005)). A major drawback in their application lies in
the intricacy of identifying the DM preference structure, which
might suffer from DM contradiction (or intransitivity) and the
existence of a non-unique preference representation (e.g. for group
preference (Arrow, 1963)). For instance, the identification of the
utility (value) function in the MAU(V)T requires the DM to answer
an extremely large number (which usually grows with the number
of objectives) of complicated questions, to which a human being
can hardly give stable and logical answers (see Tversky and
Kahneman (1974) and Larichev (1992)). As the preference struc-
ture is articulated a-priori, with no information on the objective
tradeoff, a-priori methods are said to yield uninformed decisions
(Hwang and Masud, 1979).

1.2. Interactive decision methods

In interactive (or progressive) decision making the DM gives an
initial guess on her preferences, which is used, following the a-
priori approach, to convert the original MO problem into a SO
problem. Based on the solution to this problem, the DM is allowed
to refine her preference and the process is re-iterated until a satis-
factory solution is found. Interactive methods include the Geoff-
rion-Dyer-Feinberg method (Geoffrion et al., 1972), the Tchebycheff
method (Steuer and Choo, 1983), STEP (Benayoun et al., 1971) and
the Reference Point (Wierzbicki, 1980). Also the well-known
ELECTRE methods (Roy, 1991) can be classified as an interactive
approach, which involves the weighting of the multiple objectives
for constructing a binary relation (a feature of an a-priori method)
and its subsequent modification by iteratively changing some
threshold values. Also interactive approaches have been widely
applied in environmental decision-making (e.g. Monarchi et al.
(1973); Duckstein and Gershon (1983); Tecle et al. (1994); Cai
et al. (2004)). With interactive methods, the DM is eventually
able to make an informed decision, at least partially, and thus
a major limit with the a-priori approaches is mitigated. The
complexity and high number of questions to be posed to the DM
remain an unsolved problem (Larichev, 1992), which is made even
worse by the large number of iterations often required to come to
an acceptable BCA.

1.3. A-posteriori decision methods

In contrast to the a-priori and interactive decisionmethods, in a-
posteriori methods the DM preferences for the alternatives are
expressed after the Pareto frontier (or an approximation of it) and
the associated set of Pareto-efficient alternatives are identified, by
solving the MO problem, and presented to the DM. The alternatives
are initially assumed all to have the same preference. Then, the DM
expresses her preference by analyzing objective tradeoffs and
selecting a point on the Pareto frontier, whose associated alterna-
tive is the BCA. Basically, the main advantage of a-posteriori
methods lies in the fact that the searching and decision processes
are separated and used in sequence: thus the DM has full insight
into her decision preference, the final decision is taken in a more
informed way, and the decision-making process is more trans-
parent. A-posteriori methods were proposed by Zeleny (1974),
Cohon (1978), Chankong and Haimes (1983) and Steuer (1986),
and, despite their nominal potential advantage over the other two
groups of methods, have been only rarely applied to environmental
problems (e.g. Cohon et al. (1979); Chankong and Haimes (1983);

Lotov et al. (2004); Bekele and Nicklow (2005); Lotov et al.
(2005a); Kennedy et al. (2008)). Indeed, a-posteriori methods
suffer from twomainweaknesses, which turn out to be particularly
critical in dealing with environmental issues:

(1) The solution to the MO optimization problem for determining
an approximation of the Pareto frontier and the associated set
of Pareto-efficient alternatives requires a high computational
effort, which usually grows superlinearly with the complexity
(number of state variables) of the model adopted to describe
the underlying physical process and with the number of
objectives considered. As a result, most of the distributed-
parameter, process-based, simulation models traditionally
employed in environmental modelling can hardly be combined
with the optimization algorithms available to solve MO prob-
lems. As an example, the ELCOM-CAEDYM model used in this
study to simulate hydrodynamics and ecological processes in
a 1.21 �108 m3 volume reservoir comprises 4.7 � 105 spatially
distributed state variables (14 state variables in each cell) and
has an associated real-to-run time ratio of 30:1.

(2) While in bi-objective problems the DM can easily explore the
Pareto frontier and the associated set of Pareto-efficient alter-
natives by visual inspection of a graph or a simple table, with the
growth in the number of the objectives considered, it might
become very hard, or even impossible, for the DM to understand
the properties of the Pareto frontier; especially to assess the
objective tradeoff rate, which is key-information in learning the
decision-making problem. Problems having three or more
objectives, the so-called high-order Pareto optimization prob-
lems (also known as many-objective problems (Fleming et al.,
2005)), are quite common in environmental decision-making
(e.g. Lotov (1998); Lotov et al. (2004); Reed and Minsker (2004);
Bekele andNicklow (2005); Tang et al. (2007)).Without a proper
representation of the Pareto frontier, especially the objective
tradeoffs, the potential of a-posteriori methods for supporting
more informed decisions is only a theoretical possibility.

1.4. Model reduction

An effective approach to overcoming the computational limi-
tations mentioned at point 1 above relies on the mathematical
reduction of the computationally-onerous, process-based model
available to a simplified, computationally-efficient empirical (I/O)
model, identified over a data set produced via simulation of the
original model. In planning problems, this reduction can be per-
formed by using the Response Surface (RS) methodology, which
was first proposed by Box and Wilson (1951). This methodology
involves the direct approximation of the multi-dimensional func-
tion (Response Surface) that maps the alternative decisions into the
objectives of the planning problem. The approximate RS is a low-
order regression model that can be more efficiently used in place of
the original process-based model within any MO optimization
framework. The approach has been extensively adopted in many
modelling applications and optimization problems (see Myers and
Montgomery (1995) and references therein), but has received little
attention in environmental problems, except for several traditional
environmental engineering studies (Fen et al., 2008; Fu et al.,
2008). Lately, Castelletti et al. (2010) have proposed a novel
approach in which the concept of RS approximation is re-inter-
preted in a interactive/iterative way as a sequential learning and
planning process. An initial, small set of alternatives is simulated
through the process-based model and the corresponding values of
the objectives computed. Using an appropriate class of functions
(e.g. linear interpolators, neural networks), a first approximation of
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