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a b s t r a c t

This paper presents the findings of laboratory model testing of arched bridge constrictions in a rectangu-
lar open channel flume whose bed slope was fixed at zero. Four different types of arched bridge models,
namely single opening semi-circular arch (SOSC), multiple opening semi-circular arch (MOSC), single
opening elliptic arch (SOE), and multiple opening elliptic arch (MOE), were used in the testing program.
The normal crossing (/ = 0), and five different skew angles (/ = 10�, 20�, 30�, 40�, and 50�) were tested for
each type of arched bridge model. The main aim of this study is to develop a suitable model for estimating
backwater through arched bridge constrictions with normal and skewed crossings. Therefore, different
artificial neural network approaches, namely multi-layer perceptron (MLP), radial basis neural network
(RBNN), generalized regression neural network (GRNN), and multi-linear and multi-nonlinear regression
models, MLR and MNLR, respectively were used. Results of these experimental studies were compared
with those obtained by the MLP, RBNN, GRNN, MLR, and MNLR approaches. The MLP produced more
accurate predictions than those of the others.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The bridges constrict the flow in flood events and increase the
water level at the upstream region of the bridge structure. This in-
crease in water level above the normal unobstructed level due to
constricton is defined as the backwater and shown in Fig. 1. In
Fig. 1, dh represents bridge backwater, D3 represents flow depth
at section 3 where the flow returns to its normal depth, and D1 rep-
resents flow depth at section 1 where the flow reaches its maxi-
mum depth. The accurate estimation of bridge backwater is still
problematic [1–7] due to its physical nature and it is vital in flood
defence schemes and in the economic development of floodplain
areas for agricultural and park land.

Although several studies have investigated the bridge backwa-
ter problem for modern straight deck bridges, the traditional medi-
eval arch bridges have received less attention [8].

Several studies [9–18] have defined that the blockage ratios at
sections 1 and 3 in Fig. 1, as J1 (area of blockage of bridge at depth
D1/area of flow) and J3 (area of blockage of bridge at depth D3/area

of flow) respectively, and Froude number at section 3 (Fr3) are
effective parameters in estimation of bridge backwater through
arched bridge constrictions in rivers.

In current work, these parameters were experimentally ob-
tained and modeled to predict bridge backwater. In modeling, dif-
ferent artificial neural network approaches, namely multi-layer
perceptron (MLP), radial basis neural network (RBNN), and general-
ized regression neural network (GRNN), and multi-linear and mul-
ti-nonlinear regression models, MLR and MNLR, respectively were
used. These artificial intelligence methods have been successfully
applied to the civil engineering problems like rainfall–runoff mod-
eling [19], streamflow prediction [20], suspended sediment model-
ing [21–23], break water damage ratio estimation [24], prediction
of local scour around bridge piers [25,26], modeling combined open
channel flow [27], groundwater level estimation [28], predicting
the long-term compressive strength of silica fume [29] and bridge
backwater estimation [6,30]. These models were trained and tested
on experimental data. The outputs of the MLP, RBNN, GRNN, MLR,
and MNLR were compared with experimental values.

2. Experimental apparatus and procedure

Experiments were performed in a large-scale water channel
located in the Fluid Mechanics Laboratory at Cukurova University
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in Turkey. The water channel test section which has the following
dimensions: a length of 800 cm, a width of 100 cm, and a depth of
75 cm was constructed of transparent Plexiglas with upstream and
downstream fiberglass reservoirs as shown in Fig. 2. It also has
honeycomb screen arrangement, which is located at the entrance
of contraction. Honeycomb screen arrangements are used to main-
tain the turbulence intensity below 0.1%. Water flow velocity was
controlled by an axial flow pump and pump rotation speed was
controlled by an ABB controller unit.

At the end of the flume an adjustable tailgate was located to
produce equal flow depths at each section along the 8 m test

length. When equal flow depth conditions were achieved at each
section the water surface profiles were measured using pointer
gauges, these measurements provided the average flow depth.

Velocity measurements were made using a Particle Image
Velocimetry (PIV) technique to determine Froude number (Fr) for
a given flow depth. PIV technique is one of the most reliable meth-
ods for flow velocity measurement in modern fluid mechanics. The
principle of PIV measurements is that taking images of the flow
field containing special particles shining in the laser light exposure.
With the help of a synchronizer, the time between the images to be
taken and the laser pulses is synchronized and the velocity vectors

Nomenclature

f spread factor for GRNN
a, b scaling factors
b width of bridge opening
cn connection weight between hidden and output layer

nodes for RBNN
D1 total depth at the section of maximum backwater
D3 normal flow depth of unconstricted channel
dh bridge backwater
Fr Froude number of the flow in the unconstricted section
g gravitational acceleration
J blockage ratio

N total number of data
p number of elements of an input vector for GRNN
r radial distance
U cross-sectional mean velocity
wij connection weight between nodes i and j
wjk connection weight between nodes j and k
xi input variable
xmax maximum value of input and output parameters
xmin minimum value of input and output parameters
yn connection weight between pattern and summation

layer nodes for GRNN
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Fig. 1. Definition sketch of a flow profile through a bridge constriction.

Fig. 2. Experimental setup (a) plan-view and (b) side-view.
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