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a b s t r a c t

Two-stage methods in which the inner iterations are accomplished by an alternating method are devel-
oped. Convergence of these methods is shown in the context of solving singular and nonsingular linear
systems. These methods are suitable for parallel computation. Experiments related to finding stationary
probability distribution of Markov chains are performed. These experiments demonstrate that the paral-
lel implementation of these methods can solve singular systems of linear equations in substantially less
time than the sequential counterparts.

� 2009 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

Consider the n� n linear system

Ax ¼ b; ð1Þ

where A is a matrix such that b is in RðAÞ, the range of A.
Given a splitting A ¼ M � N (M nonsingular), a classical iterative

method produces the following iteration

xðlþ1Þ ¼ M�1NxðlÞ þM�1b; l ¼ 0;1; . . . ; ð2Þ

where M�1N is called the iteration matrix of the method. On the
other hand, a two-stage method consists of approximating the lin-
ear system (2) by using another iterative procedure (inner itera-
tions). That is, consider the splitting M ¼ F � G and perform, at
each outer step l; sðlÞ inner iterations of the iterative procedure in-
duced by this splitting. Thus, the resulting method is

xðlþ1Þ ¼ ðF�1GÞsðlÞxðlÞ þ
XsðlÞ�1

j¼0

ðF�1GÞjF�1ðNxðlÞ þ bÞ; l ¼ 0;1; . . . ; ð3Þ

cf. [1]. Two-stage iterative methods have been studied, e.g., in [2–5].
In this paper, a two-stage iterative process is developed for the solu-
tion of the linear system (1), where at each outer iteration l; l ¼
0;1; . . . ; the linear system (2) is approximated by using an alternat-
ing iterative procedure. More specifically, let M ¼ P � Q ¼ R� S be
two splittings of the matrix M. In order to approximate the linear

system (2), for each l; l ¼ 0;1; . . . ; we perform sðlÞ inner iterations
of the general class of iterative methods of the form

zðkþ
1
2Þ ¼ P�1QzðkÞ þ P�1ðNxðlÞ þ bÞ;

zðkþ1Þ ¼ R�1Szðkþ
1
2Þ þ R�1ðNxðlÞ þ bÞ; k ¼ 0;1; . . . ; sðlÞ � 1

with zð0Þ ¼ xðlÞ, or equivalently

zðkþ1Þ ¼ R�1SP�1QzðkÞ þ R�1ðSP�1 þ IÞðNxðlÞ þ bÞ;
k ¼ 0;1; . . . ; sðlÞ � 1:

Thus, the alternating two-stage method can be written as follows

xðlþ1Þ ¼ ðR�1SP�1QÞsðlÞxðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞðNxðlÞ þ bÞ;

l ¼ 0;1; . . . : ð4Þ

In a similar manner as the two-stage methods, we say that an alter-
nating two-stage method is stationary when sðlÞ ¼ s, for all l, while
an alternating two-stage method is non-stationary if the number of
inner iterations changes with the outer iteration l.

Clearly, given an initial vector xð0Þ, the alternating two-stage
iterative method (4) produces the sequence of vectors

xðlþ1Þ ¼ T ðlÞxðlÞ þ csðlÞ; l ¼ 0;1; . . . ; ð5Þ

where

TðlÞ ¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞN; ð6Þ

and csðlÞ ¼
PsðlÞ�1

j¼0 ðR
�1SP�1QÞjR�1ðSP�1 þ IÞb.
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In order to analyze the convergence of the alternating two-stage
method (5) and taking into account that A ¼ M � N and
M ¼ P � Q ¼ R� S, the iteration matrices TðlÞ; l ¼ 0;1; . . . ; defined
in (6), are written as follows:

TðlÞ ¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞN

¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞðP � QÞM�1N

¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1SðI � P�1QÞM�1N

þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjðI � R�1SÞM�1N ¼ ðR�1SP�1QÞsðlÞ

þ ðI � ðR�1SP�1QÞsðlÞÞM�1N; l ¼ 0;1; . . . ð7Þ

In this paper, our study concentrates on these alternating two-stage
methods. Specifically, in Section 3, we give convergence results of
these methods for nonsingular linear systems, when the matrix A
of the linear system is monotone, H-matrix or Hermitian positive
definite. In Section 4, we also prove the convergence of these meth-
ods for consistent singular linear systems, when M-matrices or
symmetric positive semidefinite matrices are considered. In Section
5, we explore the use of parallel implementation of these alternat-
ing two-stage methods for the solution of Markov chains. Previ-
ously, in Section 2, we present some definitions and preliminaries
that are used later in the paper.

2. Notation and preliminaries

The notation and terminology adopted in this paper are along
the lines of those used by Berman and Plemmons [6]. We say that
a vector x is nonnegative (positive), denoted x P 0ðx > 0Þ, if all of
its entries are nonnegative (positive). Similarly, a matrix B is said
to be nonnegative, denoted B P O (where O is the zero matrix), if
all its entries are nonnegative. Given a matrix A ¼ ðaijÞ, we define
the matrix jAj ¼ ðjaijjÞ. It follows that jAjP O and that jABj 6 jAjjBj
for any two matrices A and B of compatible size. By qðAÞwe denote
the spectral radius of the square matrix A. A general matrix A is
called an M-matrix if A can be expressed as A ¼ sI � B, with
B P O, s > 0, and qðBÞ 6 s. The M-matrix A is singular when
s ¼ qðBÞ. The M-matrix A is nonsingular when s > qðBÞ. Let Zn�n de-
note the set of all real n� n matrices which have all non-positive
off-diagonal entries.

A nonsingular matrix A 2 Zn�n is an M-matrix if and only if A is a
monotone matrix ðA�1 P OÞ. For any matrix A ¼ ðaijÞ 2 Rn�n, we
define its comparison matrix hAi ¼ ðaijÞ by aii ¼ jaiij;aij ¼
�jaijj; i – j. A nonsingular matrix A is said to be an H-matrix if hAi
is an M-matrix.

Lemma 1 [7,8]. Let A;B 2 Rn�n.

(a) If A is an H-matrix, then jA�1j 6 hAi�1.
(b) If jAj 6 B then qðAÞ 6 qðBÞ.

Definition 2 [6,2,9]). Let A 2 Rn�n. A splitting A ¼ M � N is called

(a) regular if M�1 P O and N P O,
(b) weak regular if M�1 P O and M�1N P O,
(c) H-splitting if hMi � jNj is a nonsingular M-matrix, and
(d) H-compatible splitting if hAi ¼ hMi � jNj.

Lemma 3 [3]. Given a nonsingular matrix A and a matrix T such that
ðI � TÞ�1 exists, there is a unique pair of matrices P;Q such that P is

nonsingular, T ¼ P�1Q and A ¼ P � Q. The matrices are
P ¼ AðI � TÞ�1 and Q ¼ P � A.

In the context of Lemma 3, it is said that the unique splitting
A ¼ P � Q is induced by the iteration matrix T. We point out that
when the matrix A is singular, the induced splitting is not unique;
see e.g., [10].

Lemma 4 [6,2]. Let A ¼ M � N be a splitting.

(a) If the splitting is weak regular, then qðM�1NÞ < 1 if and only if
A�1 P O.

(b) If the splitting is an H-splitting, then A and M are H-matrices
and qðM�1NÞ 6 qðhMi�1jNjÞ < 1.

(c) If the splitting is an H-compatible splitting and A is an H-matrix,
then it is an H-splitting and thus convergent.

The transpose and the conjugate transpose of a matrix A 2 Cn�n

are denoted by AT and AH , respectively. Similarly, given a vector
x 2 Cn; xT and xH denote the transpose and the conjugate transpose
of x, respectively. A matrix A 2 Cn�n is said to be symmetric if
A ¼ AT , and Hermitian if A ¼ AH . Clearly a real symmetric matrix
is a particular case of a Hermitian matrix. A complex, not necessar-
ily Hermitian matrix A, is called positive definite (positive semidef-
inite) if the real part of xHAx is positive (nonnegative), for all
complex x – 0. When A is Hermitian, this is equivalent to requiring
that xHAx > 0ðxHAx P 0Þ, for all complex x – 0. A general matrix A
is positive definite (positive semidefinite) if and only if the Hermi-
tian matrix Aþ AH is positive definite (positive semidefinite). Given
a matrix A 2 Cn�n, the splitting A ¼ M � N is called P-regular if the
matrix MH þ N is positive definite.

Let T 2 Rn�n, by rðTÞ we denote the spectrum of the matrix T.
We define cðTÞ ¼maxfjkj : k 2 rðTÞ; k – 1g. We say that two sub-
spaces S1 and S2 on Rn are complementary if S1 � S2 ¼ Rn, i.e., if
S1 \ S2 ¼ f0g and S1 þ S2 ¼ Rn. The index of a square matrix T, de-
noted indT , is the smallest nonnegative integer k such that
RðTkþ1Þ ¼ RðTkÞ. By ind1T we denote the index associated with
the value one, i.e., ind1T ¼ indðI � TÞ. Note that when qðTÞ ¼ 1;
ind1T 6 1 if and only if ind1T ¼ 1. We say that a matrix T 2 Rn�n,
is convergent if limk!1Tk ¼ O. It is well known that a matrix T is
convergent if and only if qðTÞ < 1. By NðTÞ we denote the null
space of T.

We say that T is semiconvergent if limk!1Tk exists, although it
need not be the zero matrix. If, on the other hand, qðTÞ ¼ 1, two
different conditions need to be satisfied to guarantee semiconver-
gence, as the following result shows.

Theorem 5 [11]. Let T 2 Rn�n, with qðTÞ ¼ 1. The matrix T is
semiconvergent if and only if the following two statements hold.

(a) 1 2 rðTÞ and cðTÞ < 1, (b) NðI � TÞ �RðI � TÞ ¼ Rn.

Condition (b) is equivalent to the existence of the group inverse
ðI � TÞ#, and it is also equivalent to having ind1T ¼ 1; see, e.g., [6].
We review in what follows the definition of some generalized
inverses.

Definition 6 [6]. Let A 2 Rn�n, and consider the following matrix
equations.

(1) AXA ¼ A,
(2) XAX ¼ X, and
(3) AX ¼ XA.

A f1;2g-inverse of A is a matrix X which satisfies conditions (1) and
(2). If, in addition, X satisfies condition (3), X is said to be a group
inverse of A.

We would like to note that the group inverse A# of a matrix A, if
it exists, is unique. When A is nonsingular, each generalized inverse
coincides with A�1.
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