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a b s t r a c t

The paper is concerned with application of a new variant of the FETI domain decomposition method
called Total FETI to the solution to contact problems. Its basic idea is that both the compatibility between
adjacent sub-domains and Dirichlet boundary conditions are enforced by Lagrange multipliers. We intro-
duce the Total FETI technique for solution to the variational inequalities governing the equilibrium of sys-
tem of bodies in contact. Moreover, we show implementation of the method into a code which treats the
material and geometric non-linear effects. Numerical experiments were carried out with our in-house
general purpose finite element package PMD.

� 2008 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

Modelling contact phenomena is still a challenging problem of
non-linear computational mechanics. The complexity of such prob-
lems arises from the fact that we do not know the regions in con-
tact until we have run the problem. Their evaluations have to be
part of the solution. In addition, the solution across the contact
interface is non-smooth.

In 1991 Farhat and Roux came up with a novel domain decom-
position method called FETI (Finite Element Tearing and Intercon-
necting) [1]. This method belongs to the class of non-overlapping
totally disconnected spatial decompositions. Its key concept stems
from the idea that satisfaction of the compatibility between spatial
sub-domains, into which a domain is partitioned, is ensured by the
Lagrange multipliers, or forces in this context. After eliminating the
primal variables, which are displacements in the displacement
based analysis, the original problem is reduced to a small, rela-
tively well conditioned, typically equality constrained quadratic
programming problem that is solved iteratively. The CPU time that
is necessary for both the elimination and iterations can be reduced
nearly proportionally to the number of processors, so that the algo-
rithm exhibits the parallel scalability. This method has proved to
be one of the most successful algorithms for parallel solution of
problems governed by elliptic partial differential equations.
Observing that the equality constraints may be used to define so
called ‘natural coarse grid’, Farhat, Mandel and Roux modified

the basic FETI algorithm so that they were able to prove its numer-
ical scalability, i.e. asymptotically linear complexity [2].

The fact that sub-domains act on each other in terms of forces
suggests that the FETI approach can also be naturally applied to
solution to the contact problems with great benefit. To this effect
the FETI methodology is used to prescribe conditions of non-pene-
tration between bodies. We shall obtain a new minimisation prob-
lem with additional non-negativity constraints which replace more
complex general non-penetration conditions [3]. It turned out that
the scalability of the FETI methods may be preserved even for solu-
tion to the contact problems [3,4].

A new variant of the FETI method, called the Total FETI (TFETI)
method was presented in [5]. In this paper, we are concerned with
application of this method to solution to the contact problems
while we in addition consider the material and geometric non-lin-
ear effects.

We briefly introduce theoretical foundations of the FETI and
TFETI methods. Then we describe an algorithm, in which the TFETI
based contact solver accounts for the inner loop, while the outer
loop is concerned with the non-linear effects others than the con-
tact. Numerical experiments were carried out with our in-house
general purpose finite element package PMD (Package for Machine
Design) [6].

2. The primal problem

Let us consider the static case of a contact problem between
two solid deformable bodies. This is basically the boundary value
problem known from the continuum solid mechanics. The problem
is depicted in Fig. 1. Two bodies are denoted by ðX1;X2Þ � Rn;n ¼ 2
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or n ¼ 3, where n stands for number of Euclidean space dimen-
sions. C denotes their boundary. We assume that the boundary is
subdivided into three disjoint parts. The Dirichlet and Neumann
boundary conditions are prescribed on the parts Cu and Cf , respec-
tively. The third kind of the boundary, Cc , is defined along the re-
gions where contact occurs and can in general be treated as both
the Dirichlet or Neumann conditions. The governing equations
are given by the equilibrium conditions of the system of bodies.
In addition to these equations, the problem also is subject to the
boundary conditions; see, e.g., [7, Chapter 2] for comprehensive
survey of formulations.

Fig. 2 shows the discretised version of the problem from Fig. 1.
Both sub-domains are discretised in terms of the finite elements
method. This figure also shows applied Dirichlet boundary condi-
tions, some displacements, denoted as u, associated with the nodal
points, and the contact interface. The displacements are the primal
variables in the context of the displacement based finite element
analysis.

3. The original FETI method

The result of application of the FETI method to the computa-
tional model from Fig. 2 is depicted in Fig. 3. The sub-domain X1

is decomposed into two sub-domains in this case with fictitious
interface between them. The contact interface remains the same.
The fundamental idea of the FETI method is that the compatibility
between sub-domains is ensured by means of the Lagrange multi-
pliers or forces. kE denotes the forces along the fictitious interface
and kI stands for the forces generated by contact.

Let N be a number of sub-domains and let us denote for
i ¼ 1; . . . ;N by Ki, fi, ui and Bi the stiffness matrix, the vector of
externally applied forces, the vector of displacements and the

signed matrix with entries �1;0;1 defining the sub-domain inter-
connectivity for the ith sub-domain, respectively. The matrix B is
composed of matrices BI and BE, B ¼ ½BIBE�. BE introduces connectiv-
ity conditions along the fictitious interfaces and BI along the con-
tact ones.

The discretised version of the problem is governed by the fol-
lowing quadratic form

min
1
2

u>Ku� f>u s:t: BIu 6 0 and BEu ¼ 0 ð1Þ

where

K ¼
K1

. .
.

KN

2
664

3
775; f ¼

f1

..

.

fN

2
664

3
775; u ¼

u1

..

.

uN

2
664

3
775: ð2Þ

The original FETI method assumes that Dirichlet boundary con-
ditions are inherited from the original problem, which is shown in
Fig. 3. This fact implies that defects of the stiffness matrices, Ki,
may vary from zero, for the sub-domains with enough Dirichlet
conditions, to the maximum (6 for 3D solid mechanics problems
and 3 for 2D ones) in the case of the sub-domains exhibiting some
rigid body modes. General solution to such systems requires com-
putation of generalised inverses and bases of the null spaces, or
kernels, of the underlying singular matrices. The problem is that
the magnitudes of the defects are difficult to evaluate because this
computation is extremely disposed to the round off errors [8].

4. The total FETI method

In this section, we briefly review the main ideas the TFETI meth-
od stems from. To circumvent the problem of computing bases of
the kernels of singular matrices, Dostál came up with a novel solu-
tion [5]. His idea was to remove all the prescribed Dirichlet bound-
ary conditions and to enforce them by the Lagrange multipliers
denoted as kB in Fig. 4. The effect of the procedure on the stiffness
matrices of the sub-domains is that their defects are the same and
their magnitude is known beforehand. From the computational
point of view such approach is advantageous, see [8] for discussion
of this topic.

The overall approach resembles the classic one by Farhat et al.
[2] and others, e.g. [3]. The Lagrangian associated with the problem
governed by Eq. (1) is as reads

Lðu; kÞ ¼ 1
2

u>Ku� f>uþ k>Bu: ð3Þ

This is equivalent to the saddle point problem

Find ð�u; �kÞ so that Lð�u; �kÞ ¼ sup
k

inf
u

Lðu; kÞ ð4Þ
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Fig. 1. Basic notation of the contact problem.
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Fig. 2. The primal problem.
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Fig. 3. Principle of the FETI method.
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