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a b s t r a c t

In this work a discretization in time of variable step size of the convolution equation
uðtÞ ¼

R t
0ðt � sÞa�1uðsÞds, based on a fractional type quadrature is studied. The convergence is directly

proved thanks to a suitable representation of the error by means of Peano kernels. Practical illustrations
showing the efficiency of our numerical scheme are provided.

� 2008 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

Integro-differential equations of fractional order have recently
showed highly interesting in connection with many fields of sci-
ence (see [5,9–11]). In fact, we consider linear convolution equa-
tions of type

u0ðtÞ ¼
Z t

0

ðt � sÞa�2

Cða� 1Þ kuðsÞdsþ f ðtÞ; uð0Þ ¼ u0; ð1Þ

where k 2 C and 1 < a < 2.
It is very well known that the initial value problem (1) can be

written in an equivalent way as the integral equation of convolu-
tion type

uðtÞ ¼ u0 þ
Z t

0

ðt � sÞa�1

CðaÞ kuðsÞdsþ
Z t

0
f ðsÞds; 0 6 t 6 T: ð2Þ

For the sake of the simplicity, Eq. (2) will be written as

uðtÞ ¼ u0 þ @�akuðtÞ þ @�1f ðtÞ; 0 6 t 6 T; ð3Þ

where @�b, for b > 0, stands for the Riemann–Liouville operator, i.e.,

@�bgðtÞ ¼
Z t

0

ðt � sÞb�1

CðbÞ gðsÞds; t P 0;

which is understood as the fractional integral of order b > 0 of the
function g. A large variety of properties of fractional integrals and
derivatives can be found in [5,10].

Our interest focuses on the numerical solution of (3). In fact, it is
easily understandable that the obtention of a numerical scheme to
approximate the solution of (3) reduces to a suitable choice of the
quadrature to approximate the integral term as we show below.

Let us recall that, given s > 0, k : ½0;þ1Þ ! R and its Laplace
transform K, a fractional quadrature based on a linear multistep
methods to approximate convolution integrals reads

Z t

0
kðsÞgðt � sÞds ’

X
06js6t

wjgðt � jsÞ; 0 6 t 6 T ð4Þ

for every locally integrable g : ½0;þ1Þ ! R, where the weights wj,
for j P 0, are defined by means of the generating function

K
dðnÞ
s

� �
¼
Xþ1
j¼0

wjn
j

being d the quotient of the characteristic polynomials of the multi-
step method.

Convolution quadratures of type (4) to approximate convolu-
tion integrals in abstract frameworks has been deeply studied in
literature. In fact, in [6,7] theses quadratures has been studied in
the framework of kernels with sectorial Laplace transform, whose
results were later extended for the derivatives of these integrals
(see [8]).

Concerning to integro-differential equations of fractional order,
numerical methods based on quadratures of type (4) have been
studied to solve numerically equations of type (1) in the abstract
setting of the sectorial operators, e.g. the ones based on the back-
ward Euler method (see [3]) and BDF of two steps (see [1]). More-
over, for the second one the regularity required for the data to
guarantee the optimal order of the method was also studied in [1].
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From the implementation point of view, it is very well know the
high computational cost of these algorithms. In this way, the effort
at present concentrates in the obtention of higher order methods
as well as more efficient algorithms as, e.g. fast convolution quadr-
atures (see [12]).

Keeping in mind some ideas of Lubich in [8], in this paper we
study a numerical discretization for (3) of variable step size based
on an adaptive fractional quadrature. In fact, the quadrature con-
sidered here is based on the backward Euler method of variable
step size.

The paper is organized as follows. In Section 2 we introduce the
adaptive quadrature proposed to define the numerical scheme for
(3) which is describe in detail in Section 3. Section 4 is devoted to
show the main result and its proof and the paper concludes with
some numerical experiments shown in Section 5.

2. Adaptive quadratures of fractional type

Let g be a locally integrable function in Rþ and let us consider
the integral

Z t

0

ðt � sÞa�1

CðaÞ gðsÞds; t P 0: ð5Þ

Notice that the Laplace transform of the kernel, which reads
n#n�a, is analytic in the sector

Spð1�a=2Þ :¼ fn 2 C : j argð�nÞj < pð1� a=2Þg:

The key point of our approach consists in writing (5) in a differ-
ent manner (see [7]), i.e.,

Z t

0

ðt � sÞa�1

CðaÞ gðsÞds ¼
Z t

0

1
2pi

Z
c

enðt�sÞn�adn

� �
gðsÞds

¼ 1
2pi

Z
c

n�ayðn; tÞdn; ð6Þ

where c stands for a suitable path connecting �i1 and þi1, with
increasing imaginary part, lying outside of the sector Spð1�a=2Þ, and

yðn; tÞ ¼
Z t

0
enðt�sÞgðsÞds

represents the solution of the initial value problem

y0 ¼ nyþ g; yð0Þ ¼ 0: ð7Þ

The idea of the fractional quadratures is based on the applica-
tion of classical methods in (7) replacing later y by the numerical
solution. In fact, recalling that the backward Euler method applied
to (7) reads

yn ¼ s
Xn

j¼1

rðsnÞn�jgðtjÞ; n P 1; ð8Þ

where yn ’ yðtnÞ and rðzÞ ¼ 1=ð1� zÞ represents the quotient of the
characteristic polynomials, the fractional quadrature based on the
backward Euler method is obtained replacing (8) in (6), i.e.,Z tn

0

ðt � sÞa�1

CðaÞ gðsÞds ’ s
2pi

Z
c

n�a
Xn

j¼1

rðsnÞn�jgðtjÞdn

¼ s
Xn

j¼1

wðaÞn�jgðtjÞ ð9Þ

being

wðaÞj :¼ s
2pi

Z
c

n�arðsnÞjdn; 1 6 j 6 n: ð10Þ

Our goal consists in getting an extension of these ideas for a var-
iable step size backward Euler method. To this end let us consider
the step setting

0 ¼ t0 < t1 < t2 < � � � < tN�1 < tN ¼ T;

sn :¼ tn � tn�1 and H :¼ maxsj ð11Þ

and let assume that there exists 0 < X < 1 such that

1=X 6
si

sj
6 X:

The backward Euler method with variable step size is now writ-
ten as

yn ¼
Xn

j¼1

sj

Yn

p¼j

rðspnÞgðtjÞ

and following the same ideas as for the scheme with constant step
size, the quadrature we propose readsZ tn

0

ðtn � sÞa�1

CðaÞ gðsÞds ’
Xn

j¼1

wðaÞj;n gðtjÞ; ð12Þ

where

wðaÞj;n :¼ sj

2pi

Z
c

n�a
Yn

p¼j

rðspnÞdn; 1 6 j 6 n: ð13Þ

Notice that, if constant step size is considered, both quadratures
(4) and (12) coincide.

On the other hand, since the quadrature (12) and (13) does not
preserve the convolution structure of the fractional integral on the
contrary as occurs for the convolution quadrature (9) and (10), the
ideas in [1–3,8] are not longer valid in our proofs. Therefore, a dif-
ferent approach will be considered in the present framework.

3. Numerical scheme

The Eq. (2) might suggest different treatments for the two inte-
grals involved but in our framework the same treatment is allowed
for both of them. However, for the integral

R t
0 f ðsÞ ds, the regularity

of f plays an important role in the consistence on the numerical
scheme. To overcome this difficulty, getting a cleaver presentation
of our results, and without loss of generality, in the present paper
we focus on the homogeneous equation, i.e., f � 0, which will be
interesting enough to illustrate the main ideas of our work.

In fact, let us consider

uðtÞ ¼ u0 þ @�akuðtÞ; t P 0 ð14Þ

for 1 < a < 2 and k lying inside of the sector Spð1�a=2Þ. This assump-
tion on k allows us to guarantee that (14) is well posed.

Notice that, a naive implementation of the quadrature (12) and
(13) in Eq. (14) leads to the numerical scheme

un ¼ u0 þ k
Xn

j¼1

wðaÞj;n uj; n P 1: ð15Þ

From a practical point of view, (15) directly yields the numerical
algorithm, however in the theoretical framework, the proof of the
convergence does not seem to be easy.

In this way we propose a sightly different approach which be-
gins by taking the Laplace transform in both sides of (14). In fact,
we have

UðnÞ ¼ u0

n
þ kUðnÞ

na ;

where U stands for the Laplace transform of u. Thus,

UðnÞ ¼ na�1

na � k
u0
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