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Abstract

3D numerical simulations of ferromagnetic materials can be compared with experimental results via microwave susceptibility. In this
paper, an optimised computation of this microwave susceptibility for large meshes is proposed. The microwave susceptibility is obtained
by linearisation of the Landau and Lifchitz equations near equilibrium states and the linear systems to be solved are very ill-conditioned.
Solutions are computed using the conjugate gradient method for the normal equation (CGN Method). An efficient preconditioner is
developed consisting of a projection and an approximation of an ‘‘exact’’ preconditioner in the set of circulant matrices. Control of
the condition number due to the preconditioning and evolution of the singular value decomposition are shown in the results.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Preconditioning of large systems; Circulant matrices; Micromagnetism

1. Introduction

Ferromagnetic simulation via the micromagnetic model
is a real-life computational challenge. Ferromagnetic mate-
rials are used in numerous applications such as radar protec-
tion, magnetic recording or microelectronics. In these
applications, the magnetic objects studied are micro or
nano-objects which are difficult and expensive to craft.
Thus, one of the optimisation solutions, for the shape and
composition of such particles, is numeric simulation. The
first step in this type of simulation is to compute the dynamic
of the magnetisation and the equilibrium states. However, a
direct comparison of the results with experiments is impos-
sible for 3D particles. The main comparison tool is micro-
wave susceptibility as the resonance numerical curves can
be compared with the physical experiments. At that point
several difficulties are encountered. The main one is manag-
ing a large number of degrees of freedom. This is required to
compute interesting configurations with sufficient accuracy.

In this article, we use the micromagnetism model in order
to model the magnetisation behaviour in ferromagnetic
materials. This model is a mesoscopic model, i.e. a model

valid for a scale between the one used for microscopic Max-
well equations and the scale of classic macroscopic Maxwell
equations. In this model, magnetisation does not linearly
depend on magnetic excitation but is controlled by a non-
linear system: the Landau–Lischitz equation (1). This model
was introduced by Brown [1,2].

There are two ways to obtain the equilibrium states. The
first by energy minimisation ([3–5]), the second by relaxa-
tion of the dynamic system [6,7]. The main advantage of
the dynamical approach is to compute an equilibrium state
linked to given initial data by a life-like dynamic process;
then, we can apply dynamical treatments, via the external
field, in order to find specific equilibrium states.

Computation of the microwave susceptibility can be per-
formed by two main methods: the harmonic direct compu-
tation and the Fourier transform method. The first method
is based upon the use of a linearised version of the
evolution equation perturbated by a time harmonic exter-
nal field. The second is based upon the injection of an har-
monic perturbation. The Fourier method implies the
resolution of a time dependant problem that is quite ill-
conditioned for low frequencies (the time step ensuring that
the convergence vanishes swiftly when the frequency
decreases) but the linearisation methods permit the range
of frequencies used in the applications to be attained.
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2. The microwave susceptibility problem

2.1. The linearisation

In this problem, we are interested in computing the
microwave response of a ferromagnetic system to an
external harmonic excitation. We consider that the ferro-
magnetic material is homogeneous and contained in a C1-
class piecewise domain of R3 denoted X. Then, we study
the evolution of the magnetisation field in the neighbour-
hood of an equilibrium state of the dynamic equation. This
equation, in the micromagnetism model [1], is given by the
Landau–Lifchitz system: find m in eH 1ð½0; T � � R3;X; R3Þ ¼
fm 2 L2ðR3; R3Þ j 8t 2 ½0; T �;mjX 2 H 1ðX; R3Þ and m � 0 in
R n Xg such that

om
ot ¼ f ðm; hextÞ ¼ �m ^ ðHðmÞ þ ‘Þ
�am ^ ðm ^ ðHðmÞ þ ‘ÞÞ;

2 ð0; T � � X;

mðx; 0Þ ¼ m0ðxÞ 8t 2 X:

8>>><>>>: ð1Þ

where H is a linear operator, from eH 1ð½0; T � � R3;X; R3Þ
into H�1ðR3; R3Þ, ‘ the external magnetic field independent
of the magnetisation and element of L1ð½0; T � � R3; R3Þ,
a the damping factor (a strictly positive real) and m0 is a
given element of eS 2ðXÞ ¼ fm 2 eH 1ðR3;X; R3ÞkmjXj ¼ 1,
a.e. in X}. In this model, we can see that the local module
of the magnetisation is naturally preserved. In this article,
we define H as follows: 8m 2 eH 1ð½0; T � � R3;X; R3Þ
HðmÞ ¼ AMmþ H dðmÞ þ Kðm� ðm � uÞuÞ
where A and K positive real constants and u is an element
of eH 1ð½0; T � � R3;X; S2Þ (S2 designates the unit sphere).
The operator Hd is defined in the sense of distributions
on R3 by

rotðH dðmÞÞ ¼ 0;

divðH dðmÞÞ ¼ �divðmÞ:

�
Now, let us define the equilibrium states of system (1).

Definition 1. For a given ‘ in L1ðR3; R3Þ (independent of
time), a magnetisation state m‘, in eH 1ðR3;X; R3Þ is an
equilibrium state if, and only if,

f ðm‘; ‘Þ ¼ 0; a:e: in X:

Then, for a given equilibrium state m‘, associated to an
external state ‘, we define the microwave susceptibility.

Definition 2. For a given equilibrium state m‘, associated to
an external field ‘, we denote a susceptibility tensor of the
order 3 complex matrices v(‘) defined by

ðvð‘ÞÞl;k ¼ �
1

2T
ðkk;mlÞ0;X 8ðl; kÞ 2 f1; 2; 3g2

;

with kk = fkeixt and fk is a constant vector of R3. Further-
more, we suppose that (fk)k2{1,2,3} is an orthogonal basis of
R3. Then, for all k in {1,2,3}, mk is a solution of (1) for the
external field kk + ‘ and the initial data m0 = m‘.

Formally, if the excitation fk is sufficiently small, then
the magnetisation responses will be also small and we can
define this response for every k in {1,2,3} by

mk � m‘ ¼ lkeixt;

with lk 2 eH 1ðR3;X; C3Þ. In the following we suppose that
fk and lk are of the same order.

Then, if we re-write system (1) verified by mk, the linear-
ised equation gives

ðix� D1;‘ � h� D2;‘ÞðlkÞ ¼ D1;‘ðfkÞ ð2Þ

where, for all w in L1ðR3; R3Þ, we set

D1;‘ðwÞ ¼ �m‘ ^ w� am‘ ^ ðm‘ ^ wÞ;
D2;‘ðwÞ ¼ ðHðm‘Þ þ ‘Þ ^ wþ am‘ ^ ðw ^ ðHðm‘Þ þ ‘ÞÞ

2.2. The discretisation of the linearised equation

In order to discretise the equation, we consider a mono-
lith K(X) such that X � K(X). Ideally, this monolith is the
smaller containing X. Then, K(X) is discretised using a
regular cubic mesh of cells ðXiÞi2Nh

where h is the length
of a cell and Nh is the set of the indices. We set Xh ¼S

i2N int;h
Xi where Nint,h � Nh is the set of indices such that,

for every i in Nint,h, Xi \ X 5 ;.
Then, we choose as a discrete space for all euclidian

space F:

W hðF Þ ¼ fu 2 L2ðR3; F Þju � 0 in R3 n KðXÞ and

8i 2 Nh; ujXi is a constantg;

for each u in Wh, we set: "i 2 Nh, ui ¼ ujXi . We choose the
L2 scalar product on R3 as the scalar product on Wh, we
denote it (u,v)0,X for all u, v in L2ðR3; F Þ. Then, setting

L2ðR3; F Þ!P h W hðF Þ

u 7!P hðuÞ ¼
X
i2Nh

1i

h3

Z
Xi

udx
� �

where 1i is defined for x in R3 by 1i(x) = 1 if x belongs to
Xi, 1i(x) = 0 otherwise. P H

h designates the canonical injec-
tion of Wh(F) onto L2ðR3; F Þ.

These definitions lead to the following formulas for the
discrete magnetic contributions:

H a;h ¼ P h � H a � P H

h ;

and

Hd;h ¼ P h � Hd � P H

h ;

the analysis of Ha,h is straightforward. On the other hand,
the analysis of Hd,h is not direct, in particular, it has been
demonstrated that this discretisation preserves the main
properties of the demagnetisation operator Hd (Hd is a pro-
jection operator), and a lower estimate of its lower eigen-
value is given. Furthermore, the computation of this
operator is very expensive: the discrete matrix is a full ma-
trix. Then, to optimise its computation, we choose to use a
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