
Parallel algorithms development for programmable logic devices

Issam W. Damaj

Electrical and Computer Engineering Department, Hariri Canadian Academy of Sciences and Technology,

Meshref P.O. Box: 10 Damour, Chouf 2010, Lebanon

Received 21 July 2005; received in revised form 7 January 2006; accepted 19 January 2006
Available online 22 March 2006

Abstract

Programmable logic devices (PLDs) continue to grow in size and currently contain several millions of gates. At the same time,
research effort is going into higher-level hardware synthesis methodologies for reconfigurable computing that can exploit PLD technol-
ogy. In this paper, we explore the effectiveness and extend one such formal methodology in the design of massively parallel algorithms.
We take a step-wise refinement approach to the development of correct reconfigurable hardware circuits from formal specifications. A
functional programming notation is used for specifying algorithms and for reasoning about them. The specifications are realised through
the use of a combination of function decomposition strategies, data refinement techniques, and off-the-shelf refinements based upon
higher-order functions. The off-the-shelf refinements are inspired by the operators of communicating sequential processes (CSP) and
map easily to programs in Handel-C (a hardware description language). The Handel-C descriptions are directly compiled into reconfig-
urable hardware. The practical realisation of this methodology is evidenced by a case studying the matrix multiplication algorithm as it is
relatively simple and well known. In this paper, we obtain several hardware implementations with different performance characteristics
by applying different refinements to the algorithm. The developed designs are compiled and tested under Celoxica’s RC-1000 reconfig-
urable computer with its 2 million gates Virtex-E FPGA. Performance analysis and evaluation of these implementations are included.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Formal models; Gate array; Methodologies; Parallel algorithms

1. Introduction

The rapid progress and advancement in electronic chips
technology provides a variety of new implementation
options for system engineers. The choice varies between
the flexible programs running on a general-purpose proces-
sor (GPP) and the fixed hardware implementation using an
application specific integrated circuit (ASIC). Many other
implementation options present, for instance, a system with
a RISC processor and a DSP core. Other options include
graphics processors and microcontrollers. Specialist pro-
cessors certainly improve performance over general-pur-
pose ones, but this comes as a quid pro quo for
flexibility. Combining the flexibility of GPPs and the high
performance of ASICs leads to the introduction of recon-

figurable computing (RC) as a new implementation option
with a balance between versatility and speed.

Generally, reconfigurable computing is computer pro-
cessing with highly flexible computing fabrics. The principal
difference when compared to using ordinary microproces-
sors is the ability to make substantial changes to the data
path itself in addition to the control flow. In the last decade,
there was a renaissance in the area of reconfigurable com-
puting research with many proposed reconfigurable archi-
tectures developed both in industry and academia such as,
Matrix, Garp, RAW, DPGA, RaPiD, PRISM, Pleiades,
and Morphosys [1]. Such designs were feasible due to the
relentless progress of silicon technology that allowed com-
plex designs to be implemented on a single chip.

Field programmable gate arrays (FPGAs), nowadays are
important components of RC-systems, have shown a dra-
matic increase in their density over the last few years.
For example, companies like Xilinx [2] and Altera [3] have

0965-9978/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2006.01.009

E-mail address: damajiw@hariricanadian.edu.lb

www.elsevier.com/locate/advengsoft

Advances in Engineering Software 37 (2006) 561–582

mailto:damajiw@hariricanadian.edu.lb


enabled the production of FPGAs with several millions of
gates, such as in Virtex-II Pro and Stratix-II FPGAs. The
versatility of FPGAs, opened up completely new avenues
in high-performance computing. These reconfigurable dig-
ital electronic hardware circuits can be combined with
high-level software and design methodologies to form a
powerful paradigm for computing.

The traditional implementation of a function on an
FPGA is done using logic synthesis based on VHDL, Ver-
ilog or a similar HDL (hardware description language).
These discrete event simulation languages are rather differ-
ent from languages, such as C, C++ or JAVA. Many
FPGA implementation tools are primarily HDL-based
and not well integrated with high-level software tools. Fur-
thermore, these HDL-based IP (intellectual property) cores
are expensive and they have complex licensing schemes [4].
These obstacles had caused some blockage to the infiltra-
tion of FPGAs as the main platform solution for hardware
engineers. An interesting step towards more success in
hardware compilation is to grant a higher-level of abstrac-
tion from the point of view of programmer. Designer pro-
ductivity can be improved and time-to-market can be
reduces by making hardware design more like program-
ming in a high-level language. Recently, vendors have ini-
tiated the use of high-level languages dependent tools like
Handel-C [5–8], Forge [9], Nimble [10,11], SystemC [12]
and Viva [13] (an object-oriented graphical development
environment for programming FPGAs).

With the availability of powerful high-level tools accom-
panying the emergence of multi-million FPGA chips, more
emphasis should be placed on affording an even higher
level of abstraction in programming reconfigurable hard-
ware. Building on these research motivations, in the work
in hand, we extend and examine a methodology whose
main objective is to allow for a higher-level correct synthe-
sis of massively parallel algorithms and to map (compile)
them onto reconfigurable hardware. Our main concern is
with behavioural refinement, in particular the derivation
of parallel algorithms. The presented methodology system-
atically transforms functional specifications of algorithms
into parallel hardware implementations. It builds on the
work of Abdallah and Hawkins [14–17] extending their
treatment of data and process refinement.

This paper is divided so that the following section intro-
duces the adopted development methodology. Section 3
presents the theoretical background. In Section 4, we put
some emphasis on the approach to develop different imple-
mentations of the matrix multiplication algorithm. The fol-
lowing section details the development steps. Section 7
demonstrates selected implementations. In Section 8, we
analyze and evaluate the performance of the suggested
implementations. Finally, Section 9 concludes the paper.

2. The development method

Although compilers can expose parallelism through data
flow analysis [18], imperative languages are perhaps not

ideal as a starting point. This is because imperative pro-
grams already incorporate design decisions (concerning
control flows and data structures), preconditions (that can
be assumed), post-conditions (that must be achieved), and
invariants (that must be maintained). The direct manipula-
tion of state makes it both difficult to prove that any two
pieces of code are equivalent, and to perform substitutions,
modify and rewrite the algorithm. Functional languages
[19], such as Haskell [20], however, do not manipulate state
directly, and as such gain the property of referential trans-
parency. Any sub-expression of an algorithm can be substi-
tuted for any other that is provably equivalent. This is aided
by an effective set of laws given to us by such reasoning
frameworks as Bird-Merteen formalism (BMF) [21], along
with a wealth of other work in the functional programming
and parallel processing fields [22–27].

Although, many hardware development methods still
use the powerful data flow analysis, such as Viva [13], the
attractions for using the functional paradigm has incited
many researchers. This triggered many investigations in
this area, such as Lava [28], Hawk [29,30], Hydra [31],
HML [32], MHDL [33], DDD system [34], SAFL [35],
MuFP [36], Ruby [37], and Form [38].

The suggested development model adopts the transfor-
mational programming approach for deriving massively
parallel algorithms from functional specifications (see
Fig. 1). The functional notation is used for specifying algo-
rithms and for reasoning about them. This is usually done
by carefully combining a small number of higher-order
functions that serve as the basic building blocks for writing
high-level programs. The systematic methods for massive
parallelisation of algorithms work by carefully composing
an ‘‘off-the-shelf’’ massively parallel implementation of
each of the building blocks involved in the algorithm.
The underlying parallelisation techniques are based on
both pipelining and data parallelism.

Higher-order functions, such as map, filter, foldl, and
foldr, provide a high degree of abstraction in functional
programs [20]. Not only they do allow clear and succinct
specifications for a large class of algorithms, but they also
are ideal starting points for generating efficient implemen-
tations by a process of mathematical calculation using
BMF. Over the past decade, there have been attempts to
apply BMF for generating data-parallel programs from
abstract specifications using the skeleton approach
[24,15]. The main attraction of this approach is the poten-
tial for increasing reusability of parallel programs without
sacrificing too much performance. The essence of this
approach is to design a generic solution once, and to use
instances of the design many times for various applications.
Accordingly, this approach allows portability by imple-
menting the design on different parallel architectures.

In order to develop generic solutions for general parallel
architectures, it is necessary to formulate the design within
a concurrency framework such as CSP [15,8]. Often paral-
lel functional programs show peculiar behaviours which
are only understandable in the terms of concurrency rather

562 I.W. Damaj / Advances in Engineering Software 37 (2006) 561–582



Download English Version:

https://daneshyari.com/en/article/570070

Download Persian Version:

https://daneshyari.com/article/570070

Daneshyari.com

https://daneshyari.com/en/article/570070
https://daneshyari.com/article/570070
https://daneshyari.com

