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Abstract

Model averaging is a group of methods for combining predictions from several models which have the benefit of considering model uncer-
tainty in addition to parameter uncertainty. The aim of this paper is to introduce these methods in the context of mechanistic model development.
In model averaging predictions are combined, by weighting with factors related to model performance, resulting in ensemble predictions. Bayes-
ian Model Averaging (BMA) is model averaging in a Bayesian framework where the model weights are Posterior model probabilities (PMPs).
We describe three approximation methods (AIC, BIC and Laplace) for calculating PMPs and to compare with a full Bayesian approach imple-
mented using a Markov Chain Monte Carlo (MCMC) method (MetropoliseHastings). We also describe a simplified BMA approach which is
readily implemented, as it only requires the maximum likelihood parameter estimates and Laplace approximation of the marginal likelihoods.
We illustrate the application of BMA using a mechanistic model for predicting the plant uptake of radiocaesium from contaminated soils (the
‘Absalom Model’). Ten models were selected for averaging, these comprised the full Absalom model and nine reduced models each derived
from the full model. To assess performance model predictions and ensemble predictions were compared using an independent data set. The
PMPs estimated using the MCMC approach and the Laplace approximation were similar and strongly weighted the models with fewer
parameters. The AIC- and BIC-based estimates of the PMPs were correlated but differed considerably from the Laplace and MCMC-based
PMP methods. For our example the simplified BMA approach was performed as well as the full approach. Individual predictions differed among
models and the prediction ensembles resulting from all the approaches captured this uncertainty. We conclude that BMA is a valuable approach,
relevant to mechanistic model development, and suggest a framework for incorporating BMA into model development.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is routine to present model predictions with an estimate
of prediction uncertainty. Typically, these estimates focus on
the effect of uncertainty in the parameters of a single model,
whose structure is taken as given and not subjected to

uncertainty. In principle this might be reasonable as mechanis-
tic, or process based, models represent scientific knowledge of
a system. However, while this knowledge constrains model
structure, understanding is rarely complete and consequently
there are often several plausible candidate model structures
which result in uncertainty in the model structure itself. This
uncertainty can manifest itself both as uncertainty in how to
model part of the system or in whether it is even necessary
to include a component at all.

One rigorous approach to choice in model structure is to use
model selection criteria (e.g. Myung, 2000; Burnham and
Anderson, 2002; Cox et al., 2006) to select a single ‘best’
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model. However, this approach neglects uncertainty in the
choice of models; this uncertainty may be important especially
if there are several models that differ in predictions but have
similar criterion scores. An alternative approach is to combine
predictions from several models by a model averaging or
weighting procedure. In this case, the final predictions are
a weighted ensemble of the set of model predictions that takes
account of uncertainty in model choice which is an area in
which there is a paucity of methods available (Jakeman et al.,
2006).

1.1. An overview of model averaging

We define model averaging as a method of combining re-
sults from several models into a single set of predictions.
The simplest approach is an unweighted average across all
models. However, there is an obvious advantage to weighting
predictions by a measure of model performance. In this case,
predictions from models that perform well (but possibly differ
in predictions) would be weighted higher than predictions
from poorly performing models. For ease of implementation,
an attractive way of achieving this is to weight model predic-
tions by model likelihood, normalized so the total model
weights sum to unity. (Model likelihood is the probability of
observing the data given the model and is maximised at the
maximum likelihood estimates of the model parameter
values.) For example, the GLUE (Generalized Likelihood Un-
certainty Estimation) approach proposed by Beven and Binley
(1992) weights model predictions by model maximum likeli-
hood. However, model maximum likelihood is essentially
a measure of goodness of fit. For a given data set it can always
be increased by increasing the complexity of a model resulting
in a model that fits existing data well but predicts new data
poorly, so called overfitting or over-parameterisation. Jakeman
et al. (2006) suggest that over-parameterisation is ‘endemic in
environmental modelling’; therefore, an alternative weighting
procedure is preferable. Model selection criteria have been
proposed as model weights (e.g. Burnham and Anderson,
2002). There also exist theoretically justifiable weighting cri-
teria, which can be approximated by model selection criteria.
A further approach, with some useful benefits, is to undertake
model averaging within a Bayesian framework which we de-
scribe after first outlining the Bayesian approach to model
inference.

1.2. A Bayesian approach to model inference

Bayesian model inference estimates the posterior density,
a probability distribution of the parameter values given the
data. This is calculated using the model likelihood and a prior
density (see Appendix A for full details). This prior density rep-
resents previous knowledge about the parameter values before
observing the current data. Controversy can arise because of
the difficulties specifying prior belief mathematically and the
resulting possibility that different conclusions can be reached
from the same set of data. However, this effect rigorously
encapsulates the common observations that (i) more evidence

is often demanded to support surprising results and (ii) some
scientists require more convincing than others. To avoid subjec-
tive difficulties uninformative priors can be used, allowing the
application of Bayes’ theorem, while ‘‘letting the data speak
for themselves’’, uninfluenced by prior belief. More formally,
with uninformative priors and large samples, the mode of the
posterior density approximates the maximum likelihood
parameter values. The choice between informative or uninfor-
mative priors may make little difference provided a sufficiently
large sample of data is available so the posterior is dominated
by the data. In the Bayesian framework every unknown is
a random quantity, hence, model predictions also have posterior
densities and this can be derived by evaluating the model, for
a set of input data, at each point in the joint posterior density.
Therefore, uncertainty of prediction is explicitly and automati-
cally quantified given the model and data under consideration.
New predictions can then be made by evaluating the likelihood
of new input data over the posterior density. Except in very
simple cases direct computation of the posterior is not being
possible because of intractable integrals. This difficulty can
be overcome by directly sampling from the posterior using
Gibbs sampling or more generally a Markov Chain Monte Carlo
(MCMC) approach as described in Appendix A.

1.3. A Bayesian approach to model averaging

In a model averaging framework, in addition to uncertainty
in model parameter values (which can be regarded as within-
model uncertainty), there is also uncertainty in model choice
(uncertainty about which model is the best performing).
Extension of Bayesian inference to models provides a natural
treatment of this uncertainty (see Hoeting et al., 1999 for a full
description). A clear advantage of Bayesian Model Averaging
(BMA) is that no common structure is required for the set of
models under consideration. They can be derived from entirely
different principles and operate quite independently. The only
requirement is that they predict the same quantities.

BMA is achieved by estimating posterior model probabili-
ties (PMPs) for each model in addition to the posterior density
of the parameters. PMPs are non-negative scalar values that
sum to unity and are the relative probability of the model
being true, given the data. The ratio of PMP values for any
two models gives the relative support of those models and is
known as a Bayes factor. Model averaged or ensemble
predictions can be estimated by using the PMPs to weight pre-
dictions from individual models. Estimation of PMPs requires
specification of prior model probabilities. These priors encap-
sulate the prior belief that the model is the true model. With
no prior knowledge models can be given equal prior weight.
Burnham and Anderson (2004) suggested that, following the
parsimony principle, simpler models should be given higher
prior weights. Alternatively, domain specialists might find
models that are more detailed, more credible, and give them
higher weight. See Link and Barker (2006) for an illustration
of the consequences of different model priors.

While the parameter posterior density is estimated using the
model likelihood, estimation of PMPs requires estimation of
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