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Abstract

This paper presents a distributed model that is in operational use for forecasting flash floods in northern Austria. The main challenge in
developing the model was parameter identification which was addressed by a modelling strategy that involved a model structure defined at
the model element scale and multi-source model identification. The model represents runoff generation on a grid basis and lumped routing
in the river reaches. Ensemble Kalman Filtering is used to update the model states (grid soil moisture) based on observed runoff. The forecast
errors as a function of forecast lead time are evaluated for a number of major events in the 622 km2 Kamp catchment and range from 10% to 30%
for 4e24 h lead times, respectively.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent years have seen an explosion in the development
and use of spatially distributed models in hydrology. For the
particular case of flash flood forecasting their merits are obvi-
ous. Spatially distributed data on the landscape are widely
available and are awaiting use in predictive analysis. Rainfall
inputs are increasingly available in a spatially distributed fash-
ion and one would expect that the location of rainfall relative
to the runoff contributing areas is important for making accu-
rate forecasts. The computational resources typically installed
in forecasting centres make complex spatial computations fea-
sible. The huge amount of information stored in the databases
might suggest that the development of distributed hydrological
models has been reduced to a software engineering task but it
is argued in this paper that indeed it has not. It is a genuinely
hydrological task that requires knowledge of the hydrological
processes involved and the skill of parameterising them in
suitable ways. This is in the spirit of the 10 iterative steps in

development and evaluation of models proposed by Jakeman
et al. (2006).

The aim of this paper is to discuss some of the challenges
of distributed modelling in the context of developing a distrib-
uted flood forecasting system. The discussion will be illus-
trated by the example of the flood forecasting system of the
Kamp catchment in Austria.

The paper is organised as follows. Section 2 discusses is-
sues in distributed modelling and a strategy to model building.
Section 3 gives a description of the Kamp catchment. Section
4 presents the model structure and the input data used. Section
5 gives the results of the parameter identification procedure
and Section 6 reports on the operational use and real time
updating.

2. Issues in distributed modelling and a strategy
to model building

With the computational resources available today to most
modellers, it has become feasible to build and apply highly
complex distributed hydrological models that represent many
different processes and consist of many model elements.
Among the first to recognise, however, that, in hydrology,
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‘‘finer’’ is not necessarily ‘‘better’’ were Stephenson and
Freeze (1974) and there is a long track record of studies dem-
onstrating and discussing the difficulties in model identifica-
tion and calibration once the model becomes too complex
(e.g., Loague and Freeze, 1985; Beven, 1989, 2001; Blöschl,
2005). What is the reason for this counterintuitive fact, which
is apparently at variance with experience in fluid dynamics and
other geosciences? There now is a growing awareness that dis-
tributed hydrological models are different from models in sis-
ter disciplines in at least three important aspects. First, and
probably most important, the media properties (both soil and
vegetation) are highly heterogeneous and essentially always
unknown or at least poorly known. There will always exist
some variability within a grid element e no matter how fine
the model resolution is e that cannot be resolved. Also, not
only is the landscape heterogeneous but the heterogeneity is
complex and an adequate statistical distribution of it is diffi-
cult to find. Second, there is no unique hydrological equation
that can be derived from first principles, so most of the model
equations are empirical in nature and tend to depend on the
hydrological setting. Third, hydrological models are very
much dependent on their boundary conditions, and these are
often poorly defined. The ‘‘model dynamics’’ are relatively
less important than, say, those in fluid dynamics. While it is
possible to study the global dynamics of the atmosphere by
spinning up a model and let it run for a period, this is not
possible for a hydrological model.

These three aspects have two important implications for
distributed modelling. The first is that there will always be
some degree of calibration needed for any model to accurately
represent the hydrological processes in a particular case. The
second is that the appropriate choice of model complexity at
the element scale depends on how much information is avail-
able on the natural variability. A model with very small ele-
ments and many process descriptions that, in principle can
represent great detail, will unlikely have value over coarser
models unless the data are available to define the variability
of the model parameters (Grayson and Blöschl, 2000a). It is
indeed a common situation for practical applications of dis-
tributed models that too complex a model with limited data
are used which causes identifiability problems. In the context
of this paper these issues are addressed by adopting a model-
ling strategy that is based on two principles: (a) model struc-
ture defined at the model element scale, and (b) multi-source
model identification and verification.

(a) Model structure: the idea of avoiding excessive model
complexity has a long tradition in science starting from
the ideas of 14th century philosopher William of Ockham.
An amazing range of modelling approaches exists in
hydrology. On the one end of the spectrum of approaches
are complex physically based models with the SHE Model
(Abbott et al., 1986) probably being the classical example
of models that are based on point (or laboratory) scale
equations. Point scale equations can be straightforwardly
extended to catchments, aquifers, reaches, etc. provided
the boundary conditions are known and the media

characteristics are known spatially (e.g. uniform) at the
scale of the equations. However, hydrological systems
are never completely uniform in terms of their parameters,
fluxes and states, and are often not even approximately
uniform and the variability is rarely known (Blöschl and
Zehe, 2005; Blöschl, 2006). This is the rationale of using
simpler models including models based on the systems ap-
proach or the related downward approach (Klemeš, 1983;
Sivapalan et al., 2003). For example, Jakeman and
Hornberger (1993) and Littlewood et al. (2007), suggested
that transfer function models involving four parameters
may suffice to accurately represent the runoff dynamics
from a catchment. In the context of distributed modelling,
four parameters may not be enough to represent the com-
plex interplay between rainfall patterns and the landscape
(Moretti and Montanari, 2007; Krysanova et al., 2007).
However, it may be prudent to formulate the model equa-
tions directly at the model element scale. This supports the
choice of conceptual models that are based on solving or-
dinary differential equations rather than partial differential
equations as is the case in physically based models. The
idea is that this type of model allows some level of hydro-
logical interpretation of the parameters defined at the
model element scale rather than at the point scale. Inter-
pretability of model parameters may be an advantage in
the parameter identification step. Additionally, these
models are usually numerically robust and efficient which
is important in an operational context, particularly if en-
semble methods are used, e.g., for updating the runoff
model in a real time mode.

(b) Multi-source model identification: this strategy builds on
the notion that runoff data are a necessary, but not a suffi-
cient, condition for identifying model parameters in a real-
istic way. Grayson and Blöschl (2000b) have argued that
the development, calibration and testing of distributed
models should ideally involve observed spatial patterns
of catchment response, and that the use of runoff data
alone can be greatly misleading. These patterns of catch-
ment response can come from a number of sources.
Recent years have seen an increase in the availability of
ground-based pattern data in catchments and from remote
sensing, up to the global scale. This has led to a number of
examples of using patterns for developing and testing dis-
tributed models most of which demonstrated the value of
observed patterns. The type of variable to be used clearly
depends on the hydrological processes that are relevant in
a particular hydro-climatologic setting. For example, in
snow dominated regimes, snow cover patterns have been
shown to be useful for testing distributed models (Blöschl
et al., 1991). Other examples include inundation patterns,
soil moisture patterns and the spatial distribution of the
groundwater table (Grayson et al., 2002). In the context
of the present study, a range of spatial data have been
used that are complementary. These data include piezo-
metric heads, spatial patterns of snow, both from satellite
data and ground-based data, inundation patterns as well as
soft information, e.g., on surface flow pathways during

465G. Blöschl et al. / Environmental Modelling & Software 23 (2008) 464e478



Download English Version:

https://daneshyari.com/en/article/570417

Download Persian Version:

https://daneshyari.com/article/570417

Daneshyari.com

https://daneshyari.com/en/article/570417
https://daneshyari.com/article/570417
https://daneshyari.com

