
Short communication

Implementation of an object oriented data model in an information
system for water catchment management: Java JDO and Db4o Object

Database

Andrea Leone*, Daoyi Chen

Department of Engineering, University of Liverpool, Liverpool L69 3GQ, UK

Received 26 October 2006; received in revised form 23 May 2007; accepted 29 May 2007

Available online 3 July 2007

Abstract

Object-oriented technologies are playing increasingly important roles in every level of software application for water resource management
and modelling, except for data management levels where the relational logic is still the uncontested choice of information system developers
despite the objecterelational impedance mismatch. In this paper, we would like to present our experience concerning two different technologies
for developing the object-oriented data management layer in information systems for water resources management: (i) the Java solution to obtain
transparent persistence, the Java Data Object (JDO) technology; (ii) a purer object solution with a light open source Object Database, Db4o. The
process for implementing the two technologies in a Java-based hydro-information system is described, and the two different solutions were
analysed and compared.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Water catchment; Water resources management; Information system; Object-oriented database; JDO; Java; Object-oriented data model; Objecte
relational impedance mismatch; Open source; GIS

1. Introduction

It has been demonstrated by Spanou and Chen (2000, 2001,
2002) and others (Maidment et al., 2002) that object oriented
(OO) technologies offer great benefit to river water quality and
catchment hydrological modelling. Recently, hydro-informa-
tion systems (HISs) have been developed by Chen (2002)
and Leone et al. (2006), evolving to an OO based system
with extensions of OpenGIS standards (OpenGIS, 2006) and
connections to various relational database management sys-
tems (RDBMS). Such modern HIS can be seen as a general
framework and data exchange environment, embedding the
following common subsystems: GIS, simulation models and
management tools, databases and other external data sources,
and a user-friendly interface. These different components of
hydro-information systems are currently being developed

with the use of OO logic and technology except for the data
layer, where RDBMS are still the preferred solution in terms
of the reliability of performances.

These integrated tools allow end users and developers to
analyse real-time environmental data, and through integrated
models, to assess environmental trends and possible early
warnings (flooding, environmental hazards, etc.). The increas-
ing complexity of environmental data, also in terms data struc-
ture of data models, amount of information and networking
solutions (LAN, internet, etc.), needs the power of the OO
logic to be managed.

In general, in modern information systems for water re-
sources management, the data model is designed with OO
logic and is then integrated in the system as persistent layers
through manual objecterelational (OeR) mapping with
RDBMS. The OeR mapping is not standardised and the inter-
face is complicated by the ‘‘impedance mismatch’’ between
the domain object model of the application and the relational
model of the RDBMS (Ambler, 2006).

* Corresponding author.

E-mail address: andrea.leone@liverpool.ac.uk (A. Leone).

1364-8152/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2007.05.016

Environmental Modelling & Software 22 (2007) 1805e1810
www.elsevier.com/locate/envsoft

mailto:andrea.leone@liverpool.ac.uk
http://www.elsevier.com/locate/envsoft


‘‘Impedance mismatch’’ is a definition originated from
electrical engineering and is used in system analysis to iden-
tify the inadequate or excessive ability of one system to ac-
commodate input from another (Ambler, 2006). It is caused
by the fact that OO logic is based on software engineering
principles that model the objects in the problem domain, while
the relational model is based on mathematical principles that
organize data for efficient storage and retrieval (Paterson,
2004).

Therefore, the incongruence between the ‘‘relational logic’’
of data layers and the ‘‘object logic’’ of other components of
the HIS needs to be solved to increase the overall perfor-
mances. The obvious solution is to develop a data layer with
an object-oriented logic.

In the present work, two different object oriented solutions
for data management will be tested: the Java Data Object
(JDO) technology and an Object Database (ODB). The test
bed is a Java-based hydro-information system (3O-HIS)
(Leone et al., 2006). This information system has been devel-
oped using only open source technologies and software; its
evolution will follow the same path.

2. Design of the software architecture

2.1. System evolution towards object oriented persistence

Technology and implementation choices solutions are ori-
ented to our information system as an alternative to its first
and more conventional solution where the information system
(IS) was interfaced and ‘‘manually mapped’’ with an RDBMS.

With regards to Java technologies, the core language of the
IS, and more general OO technologies, persistence describes
the ability of an application or service to transfer the state of
transient objects to some type of data storage. According to
the Object Database Management Group (ODMG, 2000), tran-
sient objects are stored in and managed by the runtime system.
They cease to exist and are removed from the volatile memory
at the end of a process.

In order to improve the IS environmental data management
capacities, the ultimate goal is to have an OO implementation
of the logical data model in the data layer, built of persistent
objects, directly managed from the IS.

2.2. System requirements

The objective of the present study is to test two different
solutions for OO data management solving the OeR imped-
ance mismatch of the system. Besides, the OO data layers
will implement the following functionality requirements:

� capacity to manage and store objects;
� adaptability in the number of objects and storage capacity;
� working on both sides of clienteserver architectures;
� managing complex queries, similar to the query capacity

level of SQL (query language of RDBMS);
� real-time data management from data sources across the

Internet or sensor networks;

� open source software based; and
� ability to integrate existing data sources (stored in

RDBMS) with data object model.

2.3. Choice of persistence standard

Persistence is the ability of data to outlive an instance of
a program (Bauer and King, 2006). There are several open
source technologies available to implement persistence stan-
dard in Java-based information systems. Some of these tech-
nologies, used to implement OO persistence in general and
Java object persistence in particular, such as Hibernate (Bauer
and King, 2006) or Java Data Object (JDO) (Jordan and Rus-
sell, 2003), are designed to provide the developer with trans-
parent persistence; the application deals with persistent
objects without the need for SQL to be embedded in the
Java code. Another solution like Container Managed Persis-
tence (CMP) has similar performances for Enterprise Java-
Beans (EJB) containers, but it is not a general persistence
facility for the Java platform. In all these technologies, the
objects are ‘‘automatically’’ mapped to tables of an RDBMS
by the underlying framework. The developer does not have
to deal with time and performing consuming OeR mapping
operations.

To define the mappings, the developer needs to create
descriptors, typically XML files. Inheritance and many-
to-many relationships augment complexity as these cannot
be conceptually managed in the relational model. The more
complex the data model the more difficult the OeR mapping.

Purer solutions, conceptually different from OeR mapping,
are databases based on the object model. An Object Database
Management System (ODBMS) is a DBMS that supports the
modelling and creation of data as objects.

There is no official standard for ODBMS. The de facto
standard is the final release of the last Object Database Man-
agement Group (ODMG, 2000), the ODMG 3.0. The ODMG
Java binding has been now superseded by JDO.

ODBMS combines the elements of object orientation and
OO programming languages with database capabilities. They
extend the functionality of OO programming languages (e.g.,
Cþþ, Smalltalk, and Java) to provide full-featured database
programming capability. The result is a high level of congru-
ence between the data model for the application and the data
model of the database, resulting in less code (25e35% less),
more natural data structures, and better maintainability and
reusability (McClure, 1997).

In Fig. 1a, classes of an OO IS have to be mapped onto
RDBMS tables; additional tables are needed to represent OO
relationships in relational logic. In Fig. 1b, classes of an OO
IS are directly stored in an ODBMS.

3. Implementation and case study

Two different kinds of technologies, the transparent persis-
tence and the ODBMS, have been implemented in the IS data
model in order to analyse their performances dealing with

1806 A. Leone, D. Chen / Environmental Modelling & Software 22 (2007) 1805e1810



Download English Version:

https://daneshyari.com/en/article/570445

Download Persian Version:

https://daneshyari.com/article/570445

Daneshyari.com

https://daneshyari.com/en/article/570445
https://daneshyari.com/article/570445
https://daneshyari.com

