
 Procedia Computer Science 94 (2016) 105 – 112

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.08.018

ScienceDirect

The 13th International Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2016)

Partitioning Application using Graph Theory for Mobile Devices in
Pervasive Computing Environments

Nevin Vunka Junguma*, Nawaz Mohamudallya and Nimal Nissankeb
aSchool of Innovative Technologies and Engineering, University of Technology Mauritius, La Tour Koenig, Mauritius

bSchool of Computing, Information Systems and Mathematics, London South Bank University, London, UK

Abstract

The very first phase in software partitioning is to choose an appropriate clustering methodology before moving the clusters to
multiple computational nodes since this stage can impact on the distribution of clusters and eventually on the performance of the
overall application. In pervasive computing environments, certain memory and cpu intensive applications would prefer to use the
computational nodes (anything with at least networking, storage and cpu capabilities) available in the environment. To this end,
this paper investigates the very specific area of clustering or partitioning an object-oriented application running on mobile devices.
Graph theory has been used to model an application and a cluster analysis algorithm has been proposed. Details about the
implementation are covered, followed by a laboratory application partitioning using the proposed approach. Researchers and
software designers willing to investigate software partitioning can consider this practical and easy implementable approach.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: application partitioning; clustering; graph theory; pervasive computing

1. Introduction

The idea or concept behind pervasive computing1 is now almost clear within the scientific community due to the
large interest given by researchers. Software partitioning 2,3,9,10,11 as well is not a new topic; largely discussed at times

* Corresponding author.

E-mail address: nevin.vunkajungum@gmail.com

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.018&domain=pdf

106 Nevin Vunka Jungum et al. / Procedia Computer Science 94 (2016) 105 – 112

when they were very essential for partitioning software to run on desktops and servers connected in wired networks.
However, since the advent of next generation smart environments, existing partitioning falls short since they were
primarily designed to work in wired networks where the percentage of connectivity loss is very low compared to
mobile wireless networks. In pervasive environments, mobile devices running applications are most of the time not
connected to a power source unlike in the old days of the desktops and servers.

This work deals with the specific aspect of efficient partitioning of object-oriented applications, Java in this case,
running on limited resource mobile devices. Partitioning an application and moving the generated partitions to different
computational nodes are two distinct operations. In this paper, the first part is investigated.

Clustering allows better scalability, easy routing and load balancing. The Java application is modeled as a connected
undirected weighted graph and a clustering algorithm is applied to create clusters of classes. A Java-based application
is composed of a set of classes (native and non-native) some or all linked to each other. Native classes describes the
set of classes that are suitable to be executed on the source device such as components that directly accesses local I/O
devices, for example in Java, components with native method to access local files, components that directly access
device-specific information like system.properties contain specific information related to the host system and also
components that directly handles the user interaction. Here linked refers to any relationship that would force either
class to interact, for example, method calls. Method from one class/object calling another method from another
class/object. Hence, using graph theory, an application can be modeled as an undirected graph conveniently
where is the set of vertices of the graph representing the set of classes (class level granularity) and is the set of
edges of the graph representing the set of interaction (for example, method calls) between classes. The memory and
CPU consumptions of each class are represented as attributes of the class. The idea behind using clustering is to group
neighbored classes that have similar interaction frequencies /edges’ values together. Since high interaction frequency
classes would exchange messages very often, it is more appropriate to cluster them together and, where ever possible,
host them on a single node that meet all hardware requirements. This approach has an immediate effect of reducing
networking cost when compared to randomly partitioning the application in multiple groups of classes and simply
loading them to random nodes. Considering the popularity of the Java programming language especially in the
networking domain, the latter has been chosen for all implementations. But the proposed approach can be used without
any hassle to build applications implemented in any other object oriented programming language.

The paper is structured as follows: In Section 2, an application is modeled as a graph using Graph Theory. Section
3 proposed a cluster analysis algorithm to partition the application in clusters. The application of the algorithm is
explained and the approach is analyzed. Implementation details are covered in Section 4, whereas Section 5 describe
the algorithm in action by partitioning an application. And finally Section 6 conclude this paper.

2. Modeling Application as a Graph

In this section, a formal modeling approach using graph theory is presented to model applications. It is important
to model the application to permit any clustering algorithm to perform computation on the former. As mentioned
above, applications whether mobile or desktop-based, are mostly composed of native and non-native classes. A
connected undirected weighted graph is used to model an application’s structure. The partitioning process of
the complete graph classes aim into creating one and disjoint non-native partitions

, where is a non-negative integer, to satisfy:

 and ;

and where , and (1)

Inspecting the anatomy of a Java application permit one to see a relationship/link among classes. For example, a
sub-class extending a super-class or a method in one class calling a method in another class. Thus, as per the definition
of connectivity4 in graph theory, an undirected graph is connected if for each pair of vertices
there is a path from to . As mentioned previously, the vertex set represents application classes whereby each
vertex is associated with a finite ordered list of elements, that is, an -tuple , where is a
non-negative integer, which represent the different resources a vertex/class consumes. In this case, the following

Download English Version:

https://daneshyari.com/en/article/570492

Download Persian Version:

https://daneshyari.com/article/570492

Daneshyari.com

https://daneshyari.com/en/article/570492
https://daneshyari.com/article/570492
https://daneshyari.com

