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Topological data analysis provides a multiscale description of the 
geometry and topology of quantitative data. The persistence land-
scape is a topological summary that can be easily combined with 
tools from statistics and machine learning. We give efficient algo-
rithms for calculating persistence landscapes, their averages, and 
distances between such averages. We discuss an implementation of 
these algorithms and some related procedures. These are intended 
to facilitate the combination of statistics and machine learning 
with topological data analysis. We present an experiment showing 
that the low-dimensional persistence landscapes of points sampled 
from spheres (and boxes) of varying dimensions differ.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We provide some algorithms and computational tools for statistical topological data analysis. In 
particular, we give algorithms for calculating the persistence landscape, a functional summary of per-
sistence modules. We also give algorithms for calculating the averages of such summaries, and for 
calculating distances between such averages. These tools also provide an alternative computational 
approach for calculating distances between topological summaries that may be useful when other 
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methods are computational prohibitive. In addition, we specify an implementation of these algorithms 
and some related tools that we have made publicly available.

We are motivated by topological data analysis (Ghrist, 2008; Carlsson, 2009). Its main tool, persistent 
homology provides a multiscale description of the topology of the data of interest, called either a 
barcode or a persistence diagram. Unfortunately this summary is difficult to work with from the point 
of view of statistics and machine learning. For example, it is not feasible to calculate averages. For 
these purposes, it is convenient to replace these summaries with a linear summary, that is, a finite-
or infinite-dimensional vector. In a linear space it is easy to calculate averages. One such vector which 
does not lose any information is the functional summary called the persistence landscape (Bubenik, 
2015). Since this summary may be thought of as lying in a Hilbert space, in the language of machine 
learning, it is a feature map. There is an associated kernel (Reininghaus et al., 2015) to which standard 
machine learning tools may be applied.

1.1. Background

In the simplest computational setting for topological data analysis, the data of interest is encoded 
in a finite filtered complex,

K0 ⊂ K1 ⊂ . . . ⊂ Kn. (1)

This is a filtration of the complex K = Kn and it is sometime convenient to add K−1 = ∅. Persistent 
homology (Edelsbrunner et al., 2002; Zomorodian and Carlsson, 2005) gives a multiscale representation 
of the topology of this complex. To be precise, one applies homology in some degree with coefficients 
in some field to (1) to obtain a sequence of finite-dimensional vector spaces and linear maps,

H(K0) → H(K1) → . . . → H(Kn), (2)

called a persistence module. It turns out that the persistence module can be completely described 
by a finite sequence of pairs {(bi, di)}, with bi < di . For each such pair (bi, di) there is a choice of 
a nonzero homology class αi ∈ H(Kbi ) that is not in the image of H(Kbi−1) and whose image is 
nonzero in H(Kdi−1) but is zero in H(Kdi ). One sometimes says that αi is born at bi and dies at di . 
Furthermore, the homology classes {αi} and their nonzero images under the maps in (2) give a basis 
for the vector spaces in (2). Considering these pairs as points in the plane, one obtains the persistence 
diagram. Considering them as intervals [bi, di) one obtains the barcode. We will often refer to them 
as birth–death pairs. In the simple setting of (1), we have bi, di ∈ {0, 1, . . . , n}. However we can gen-
eralize to bi, di ∈ R by associated a corresponding increasing sequence of real numbers with (1). This 
summary is stable (Cohen-Steiner et al., 2007, 2010; Chazal et al., 2012) in that small perturbations 
of the data will lead to small perturbations of these pairs, under suitable choices of distance. Success-
ful applications of topological data analysis include breast cancer data (Nicolau et al., 2011), sensor 
networks (de Silva and Ghrist, 2007), orthodontic data (Gamble and Heo, 2010), signal analysis (Perea 
and Harer, 2015), target tracking (Bendich et al., 2014a), and brain artery data (Bendich et al., 2016).

Now let us define the persistence landscape (Bubenik, 2015). First, for a birth–death pair (b, d), let 
us define the piecewise linear function f(b,d) : R → [0, ∞].

f(b,d) =

⎧⎪⎨
⎪⎩

0 if x /∈ (b,d)

x − b if x ∈ (b, b+d
2 ]

−x + d if x ∈ ( b+d
2 ,d)

(3)

The persistence landscape of the birth–death pairs {(bi, di)}n
i=1 is the sequence of functions λk : R →

[0, ∞], k = 1, 2, 3, . . . where λk(x) is the k-th largest value of { f(bi ,di)(x)}n
i=1. We set λk(x) = 0 if the 

k-th largest value does not exist; so λk = 0 for k > n. Equivalently, the persistence landscape is a 
function λ : N × R → [0, ∞], where λ(k, t) = λk(t). In this definition we have assumed that b and d
are finite. In the appendix we show that this definition extends to the cases where b and/or d are 
infinite.
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