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The complex of curves C(S g) of a closed orientable surface of 
genus g ≥ 2 is the simplicial complex whose vertices, C0(S g), are 
isotopy classes of essential simple closed curves in S g . Two vertices 
co-bound an edge of the 1-skeleton, C1(S g), if there are disjoint 
representatives in S g . A metric is obtained on C0(S g) by assigning 
unit length to each edge of C1(S g). Thus, the distance between 
two vertices, d(v, w), corresponds to the length of a geodesic—a 
shortest edge-path between v and w in C1(S g). In Birman et al.
(2016), the authors introduced the concept of efficient geodesics in 
C1(S g) and used them to give a new algorithm for computing 
the distance between vertices. In this note, we introduce the 
software package MICC (Metric in the Curve Complex), a partial 
implementation of the efficient geodesic algorithm. We discuss the 
mathematics underlying MICC and give applications. In particular, 
up to an action of an element of the mapping class group, we 
give a calculation which produces all distance 4 vertex pairs for 
g = 2 that intersect 12 times, the minimal number of intersections 
needed for this distance and genus.
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1. Introduction

Let S or S g denote a compact, connected, orientable surface of genus g , where g ≥ 2. A simple 
closed curve on S is essential if does not bound a disk in S . The complex of curves, introduced by 
Harvey (1981), is the simplicial complex, C(S), whose vertices (or 0-skeleton), C0(S), are isotopy 
classes of essential simple closed curves; and, whose edges of the 1-skeleton, C1(S), connect vertices 
that have disjoint representatives. For the remainder of this note, “curve” will mean “simple closed 
curve”. By declaring that each edge of C1(S) has length 1, we endow C0(S) with a metric. Specifically, 
an edge path is a sequence of vertices {v = v0, v1, · · · , vn = w} such that d(vi, vi+1) = 1. A geodesic 
path joining v and w is a shortest edge-path. The distance, d(v, w), between arbitrary vertices is 
the length of a geodesic path. Since it is known that the complex of curves is connected, which was 
stated by Harvey (1981) and followed from a previous argument of Lickorish (1964), the value d(v, w)

is well-defined for all vertex pairs.
The coarse geometric properties of the complex of curves were first studied extensively by 

Masur and Minsky (2000; 1999). One of the premier results of their work is that the C(S) is 
δ-hyperbolic—geodesic triangles in C1(S) are δ-thin in the sense that any one edge is contained in the 
δ-neighborhood of the union of the other two edges. The complex of curves has proved a useful tool 
for the study of hyperbolic 3-manifolds, mapping class groups and Teichmüller theory. Indeed, Masur 
and Minsky establish that Teichmüller space (with the Teichmüller metric) can be enlarged to an elec-
tric Teichmüller space that is quasi-isometric to the C1(S) (Masur and Minsky, 2000, cf. Theorem 1.2 
& Lemma 3.1). The concept of enlarging a geodesic metric space to an “electric space” relative to a 
collection of regions in the metric space is due to Farb (1998). In an analogous fashion to Teichmüller 
space, Masur and Minsky prove that the mapping class group, Mod(S), or more strictly speaking, its 
Cayley graph, can be enlarged to an electric space that is also quasi-isometric to C1(S) (Masur and 
Minsky, 2000, cf. Theorem 1.3 & Lemma 3.2). Thus, both Teichmüller space (with the Teichmüller 
metric) of S and Mod(S) are relatively hyperbolic. Finally, it has been established that there exists a 
δ that is independent of genus g , i.e. we have uniform hyperbolicity (Aougab, 2013; Bowditch, 2014;
Clay et al., 2013; Hensel et al., 2015).

Specifically regarding efforts at making explicit distance calculations, Leasure initially proved the 
existence of an algorithm to compute the distance between two vertices of C0(S) (Leasure, 2002, cf. 
Corollary 3.2.6). Later, other algorithms that utilize properties of the coarse geometry were estab-
lished by Shackleton (2012) and Webb (2013). However, none of these algorithms can reasonably be 
implemented due to the large amount of case counting needed even for short distances and small 
genus.

There are two types of local pathology in C1(S) that make calculating distance for specific ver-
tex pair problematic. First, C1(S) is locally infinite, since there are infinitely many essential curves 
representing distinct isotopy classes disjoint from any fixed similar curve; this means that there are 
infinitely many vertices that are distance 1 from any given vertex. Second, there are typically in-
finitely many distinct geodesics joining any two vertices. To take a simple illustration of this second 
pathology, consider two curves, α, β ⊂ S2, that intersect exactly once. The complement of α ∪ β is 
homeomorphic to a once punctured genus one surface. In this genus one sub-surface of S2 there are 
infinitely many essential curves representing distinct vertices of C0(S2). Thus, the vertices associated 
with α and β are distance two apart, and there are infinitely many distinct geodesics between their 
corresponding vertices. Although there are straightforward procedures for constructing an edge path 
in C1(S2) between two arbitrary vertices, there are infinitely many such edge paths (due to the first 
pathology) and infinitely many geodesic paths (due to the second pathology), making identifying a 
shortest edge path for computing distance challenging.

Recently Birman, Margalit and the second author (Birman et al., 2016) have given a new 
algorithm—the efficient geodesic algorithm—and we have developed an implementation of it called the 
Metric in the Curve Complex (MICC). Applications of MICC we will present in this note include:

(i) establishing that the minimal geometric intersection number for vertices of C(S2) with distance 
four is 12,
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