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a b s t r a c t

A perceptual space is a mental workspace of points in a sensory domain that supports similarity and dif-
ference judgments and enables further processing such as classification and naming. Perceptual spaces
are present across sensory modalities; examples include colors, faces, auditory textures, and odors.
Color is perhaps the best-studied perceptual space, but it is atypical in two respects. First, the dimensions
of color space are directly linked to the three cone absorption spectra, but the dimensions of generic per-
ceptual spaces are not as readily traceable to single-neuron properties. Second, generic perceptual spaces
have more than three dimensions. This is important because representing each distinguishable point in a
high-dimensional space by a separate neuron or population is unwieldy; combinatorial strategies may be
needed to overcome this hurdle.
To study the representation of a complex perceptual space, we focused on a well-characterized 10-

dimensional domain of visual textures. Within this domain, we determine perceptual distances in a
threshold task (segmentation) and a suprathreshold task (border salience comparison). In N = 4 human
observers, we find both quantitative and qualitative differences between these sets of measurements.
Quantitatively, observers’ segmentation thresholds were inconsistent with their uncertainty determined
from border salience comparisons. Qualitatively, segmentation thresholds suggested that distances are
determined by a coordinate representation with Euclidean geometry. Border salience comparisons, in
contrast, indicated a global curvature of the space, and that distances are determined by activity patterns
across broadly tuned elements. Thus, our results indicate two representations of this perceptual space,
and suggest that they use differing combinatorial strategies.
Significance Statement: To move from sensory signals to decisions and actions, the brain carries out a
sequence of transformations. An important stage in this process is the construction of a ‘‘perceptual
space” – an internal workspace of sensory information that captures similarities and differences, and
enables further processing, such as classification and naming. Perceptual spaces for color, faces, visual
and haptic textures and shapes, sounds, and odors (among others) are known to exist. How such spaces
are represented is at present unknown. Here, using visual textures as a model, we investigate this.
Psychophysical measurements suggest roles for two combinatorial strategies: one based on projections
onto coordinate-like axes, and one based on patterns of activity across broadly tuned elements scattered
throughout the space.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Perceptual spaces are internal workspaces within a sensory
modality. By providing a representation that captures similarities
and differences, perceptual spaces form a stage of sensory process-
ing that not only supports simple discrimination judgments but
also enables higher levels of processing, such as classification and
naming. Our goal here is to understand the nature of this represen-
tation, using the perceptual space of image statistics (Victor et al.,

2015) as a model. Along with (Edelman, 1998), our use of the term
‘‘representation” refers not only to the points of the perceptual
space (i.e., to individual stimuli), but also, to similarity judgments
(i.e., to how distances between stimuli are computed).

Among perceptual spaces, the space of human trichromatic
color vision is the oldest and best known example (Maxwell,
1860). However, many other perceptual spaces have been identi-
fied: not only in vision (for faces (Catz, Kampf, Nachson, &
Babkoff, 2009; Freiwald, Tsao, & Livingstone, 2009; Tanaka,
Meixner, & Kantner, 2011; Valentine, 1991; Wallraven, 2014) and
other objects (Wallraven, 2014)) but also in other sensory modal-
ities (Bushdid, Magnasco, Vosshall, & Keller, 2014; Gaissert,
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Wallraven, & Bulthoff, 2010; Geffen, Gervain, Werker, & Magnasco,
2011; Koulakov, Kolterman, Enikolopov, & Rinberg, 2011;
McDermott, Schemitsch, & Simoncelli, 2013; McDermott &
Simoncelli, 2011; Yoshioka, Bensmaia, Craig, & Hsiao, 2007; Zaidi
et al., 2013).

While color space is perhaps the most widely studied, many of
its characteristics are not generic. For primate color vision, the
properties of the three cone classes determine the dimensions of
the space (Baylor, Nunn, & Schnapf, 1987), provide it with a coor-
dinate system, and enable construction of stimuli that modulate
each coordinate independently (Derrington, Krauskopf, & Lennie,
1984). For other perceptual spaces, the dimensionality is much lar-
ger, and these perceptual dimensions do not map in a straightfor-
ward way to the physics of the stimulus (Bushdid et al., 2014;
Freiwald et al., 2009; Koulakov et al., 2011; Victor, Thengone,
Rizvi, & Conte, 2015; Cho, Yang, & Hallett, 2000; Portilla &
Simoncelli, 2000). Thus, it is not even guaranteed that generic per-
ceptual spaces have a coordinate system, or that it is possible to
find a set of independent perceptual dimensions. Nevertheless,
these more complex perceptual spaces also support threshold
and suprathreshold judgments.

Because typical perceptual spaces are multi-dimensional, repre-
senting them via ‘‘brute-force” strategies – in which each discrim-
inable stimulus is represented by a separate neuron (or neural
population) – is biologically implausible, because of a dimensional
explosion of the resources required. If there are D independent
dimensions and N discriminable values on each of the correspond-
ing axes, there would be ND distinct points in the space. In the case
of color (D ¼ 3 and N > 100), this leads to an estimate of over 106

distinct stimuli (colors) that need to be represented. For olfactory
stimuli, it is estimated that D is much larger than 10 (Koulakov
et al., 2011), and the total number of discriminable stimuli has
been estimated at > 1012 (Bushdid et al., 2014). The space of visual
textures, the present focus, is also high-dimensional; to analyze
how it is represented, we study regions within a well-
characterized 10-dimensional subset (Victor & Conte, 2012;
Victor et al., 2015).

The dimensional explosion in resources required for a brute-
force representation can be mitigated by combinatorial strategies.
One class of such strategies makes use of coordinates for the space
(e.g., the amount of each color primary). By projecting the entire
space onto each axis, a high-dimensional space can be efficiently
represented in terms of its one-dimensional projections. A second
class of strategies does not rely on a coordinate system in the usual
sense, but instead postulates that neurons have a diverse set of
broadly-tuned sensitivities. Interestingly, theoretical arguments
suggest that this strategy becomes efficient for spaces of dimen-
sionality D P 3 (Zhang & Sejnowski, 1999).

While both kinds of strategies are combinatorial, they make
contrasting predictions about distances. Consider an experiment
that measures perceptual distance between test points that are
displaced in opposite directions from a reference point near the
center of the space. In this experiment, we measure the percep-
tual distance as the amount of the displacement increases – that
is, as the test points are pulled further and further apart. In a
coordinate-based representation, the perceptual distance can only
increase – since the distance between the projections of the two
test points onto any axis must increase, as the test points move
away from the reference. But in a representation based on pat-
terns of activity across broadly-tuned neurons, other outcomes
are possible. For example, suppose that most of the neurons are
tuned to regions near the center of the space, and very few of
them cover its periphery – as would be expected from an efficient
deployment of resources (Hermundstad et al., 2014). Then, as the

test points move into the periphery, fewer and fewer neurons
contribute to their representations, and they therefore become
less distinguishable.

These considerations motivate our approach to probing the rep-
resentation of visual textures. In one experiment, we measure dis-
crimination thresholds; in another, we measure suprathreshold
perceptual distances. Our results suggest that both kinds of combi-
natorial strategies are used to compute distances – a coordinate-
based representation that accounts for discrimination thresholds,
and a distributed representation that accounts for the global per-
ceptual geometry of the space.

2. Materials and methods

The experiments described here consist of two kinds of psy-
chophysical measurements: threshold judgments, using a texture
segmentation paradigm, and suprathreshold judgments, using a
border salience paradigm. Both paradigms made use of the same
domain of visual textures; we describe this domain first and then
describe the specifics of the two paradigms.

2.1. The stimulus space

The stimulus domain is a continuum of visual textures. The
parameters that describe the textures – i.e., the coordinates of
the space – are a set of image statistics, each of which measures
a specific local correlation (described below). Importantly, the tex-
ture associated with a particular set of values of the image statis-
tics is a ‘‘maximum-entropy” ensemble: a collection of images,
or, equivalently, a single infinite image, that are as random as pos-
sible, given the specified values of the statistics. This ensures that
the image statistics fully determine the information available to
the visual system. The stimuli used in the experiments are then
random samples of this ensemble. For full details concerning the
domain and sampling algorithms, see ((Victor & Conte, 2012);
additional background and rationale may be found in other publi-
cations that use this domain (Hermundstad et al., 2014; Victor,
Thengone, & Conte, 2013; Victor et al., 2015).

Each texture is a binary (black-and-white) coloring of a grid of
checks. The parameters associated with a given texture are the
probabilities of occurrence of each of the ways that 2� 2 neighbor-
hoods can be colored. Although 16 such colorings are possible
(16 ¼ 22�2), there are only 10 degrees of freedom – because the
16 probabilities must sum to 1, and the overlapping portions of
adjoining 2� 2 blocks necessarily must match. It is natural to
recast these 10 degrees of freedom in terms of local correlations,
which are the coordinates of the space. Note that here we are refer-
ring to the coordinates of the stimuli themselves, which need not
correspond to coordinates of a perceptual representation.

This strategy yields four groups of coordinates, corresponding
to first-, second-, third-, and fourth-order correlations (Fig. 1A).
(An nth-order correlation means that n checks must be simultane-
ously considered to determine the correlation’s value.) Each of
these 10 coordinates ranges from �1 to +1; the origin of the space
(the texture corresponding to a value of 0 for each coordinate) is a
completely random binary image.

Coordinates are designated as follows. The single first-order
coordinate, c, is the difference between the probability of a white
check and the probability of a black check. It indicates the lumi-
nance bias: c ¼ þ1 means that all checks are white, c ¼ �1 means
that all checks are black, and c ¼ 0 means that both are equally
likely.

The four second-order coordinates, denoted b , bj, bn, and b=,
measure two-point correlations, in the orientations indicated by
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