
Full length article

Predicting postoperative gait in cerebral palsy
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A B S T R A C T

In this work, postoperative lower limb kinematics are predicted with respect to preoperative kinematics,
physical examination and surgery data. Data of 115 children with cerebral palsy that have undergone
single-event multilevel surgery were considered. Preoperative data dimension was reduced utilizing
principal component analysis. Then, multiple linear regressions with 80% confidence intervals were
performed between postoperative kinematics and bilateral preoperative kinematics, 36 physical
examination variables and combinations of 9 different surgical procedures. The mean prediction errors
on test vary from 4� (pelvic obliquity and hip adduction) to 10� (hip rotation and foot progression),
depending on the kinematic angle. The unilateral mean sizes of the confidence intervals vary from 5� to
15�. Frontal plane angles are predicted with the lowest errors, however the same performance is achieved
when considering the postoperative average signals. Sagittal plane angles are better predicted than
transverse plane angles, with statistical differences with respect to the average postoperative kinematics
for both plane’s angles except for ankle dorsiflexion. The mean prediction errors are smaller than the
variability of gait parameters in cerebral palsy. The performance of the system is independent of the
preoperative state severity of the patient. Even if the system is not yet accurate enough to define a surgery
plan, it shows an unbiased estimation of the most likely outcome, which can be useful for both the
clinician and the patient. More patients’ data are necessary for improving the precision of the model in
order to predict the kinematic outcome of a large number of possible surgeries and gait patterns.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

Orthopaedic surgery is usually performed in order to lessen gait
abnormalities observed in patients with cerebral palsy (CP).
Multiple bones and muscles are operated during a Single Event
Multilevel Surgery (SEMLS) [1], which combines several proce-
dures in the same surgery.

Clinical Gait Analysis (CGA) is used in combination with
physical examination in order to propose a suitable surgery to
patients with CP [1]. However, surgical decision making is not yet
fully standardized. Different surgical procedures may be proposed
to address the same gait deviation and different decision making
algorithms may be used by medical teams to define surgical plans.
Moreover, once the indication is established it is difficult for the

surgeon and furthermore for the patient to predict the effect of the
surgery. Recently, several decision-making tools based on statisti-
cal machine learning have been developed for predicting surgery
outcome in SEMLS. Reinbolt et al. [2] used linear discriminant
analysis for predicting good or bad outcomes of rectus femoris
transfer for patients with stiff knee. For predicting good or bad
outcomes of hamstring lengthening, Arnold et al. [3] utilized
hierarchical log-linear analysis and Sebsadji et al. [4] used support
vector machines both combined with musculoskeletal models.
Schwartz et al. [5] used random forests for predicting good or bad
outcomes of psoas lengthening. All of the above methods give
qualitative outcome predictions of improvement or non-improve-
ment, but they do not help the surgeon nor the patient to predict
how the latter will walk after surgery.

Some other methods predict some quantitative gait param-
eters. Hicks et al. [6] used multiple linear regression for predicting
post-treatment knee flexion during stance for patients presenting
crouch gait and also established good or bad outcomes based on
these predictions. Sullivan et al. [7] used regression analysis and
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Hersh et al. [8] used artificial neural networks to predict knee
flexion during gait after rectus femoris transfer. Galarraga et al. [9]
utilized artificial neural networks for predicting postoperative
knee flexion and pelvic tilt at initial contact with or without
hamstring lengthening. All previous works already mentioned are
based on one type of abnormal gait patterns in CP (i.e. stiff knee or
crouch gait) or on one principal surgical procedure, without
considering the effect of other surgical procedures and their
combinations. Niiler et al. [10] considered rectus femoris transfer
and concurrent surgeries (hamstring lengthening, Achilles length-
ening and gastrocnemius lengthening) of 68-patient series (94
lower limbs) and performed linear regressions for predicting
postoperative knee range of motion during gait.

Despite these previous works, surgery planning remains
difficult and global gait outcome prediction is still incomplete.
Moreover, it is difficult to explain postoperative expected outcome
to patients and their families, who might struggle to imagine a
realistic outcome based on the predicted parameters.

The objective of this study was to use statistical machine
learning techniques to develop a system able to predict postoper-
ative kinematic curves of children with CP based on preoperative
physical examination and 3-D gait analysis, and a proposed surgery
plan.

2. Materials and methods

2.1. Population and data description

This retrospective study analyzed anonymous data of children
with CP that have undergone SEMLS within a ten year period
between 2004 and 2014. These children have had physical
examination and CGA before and at least one year after surgery.
Gait analysis was performed pre and postoperatively in the same
laboratory. From 2004 to 2007, the acquisition was performed with
a SAGA 3RT Biogesta system and, since 2008, with a Vicon system.
Lower limb marker placements were identical in all the exams and
kinematic data were computed from the acquisition’s raw data
(marker coordinates) with the same custom software based on a
modified Helen Hayes [11,12] model with anatomical markers on
the femoral condyles and the medial-malleolus. Fifteen kinematic
angles were considered for each patient: pelvic tilt, pelvic

obliquity, pelvic rotation and hip flexion, hip adduction, hip
rotation, knee flexion, ankle dorsiflexion and foot progression for
both lower limbs. Surgical data were decomposed into combina-
tions of Ns ¼ 9 surgery categories: hip bony surgery, hip soft tissue
surgery, rectus femoris surgery (transfer or release), hamstring
lengthening, patella lowering, distal femoral osteotomy, shank
bony surgery, ankle-foot soft tissue surgery and foot bony surgery.
The surgical categories have been established depending on their
functional objective and joint or segment that is modified. In these
categories, some different surgical procedures are grouped in the
same class if their functional objective and the affected joints or
segments are alike [see Supplementary data for examples]. For

each lower limb j, a surgery binary code Sj ¼ sj;1 � � � sj;Ns

� �T was

attributed where sj;i ¼ 1ifgestureiwasconductedonpatientj
0ifgestureiwasnotconductedonpatientj

�
with i ¼ 1; . . . ; Ns and T is the transpose operator.

2.2. Preprocessing

The variables that have been measured during physical
examination varied depending on the patient and the clinician
that performed the exam. For this reason, we considered 36
parameters that were measured at a minimum rate of 80% in our
database. These parameters include information about size and
weight; hip, knee and ankle ranges of motion; muscle force; and
spasticity (details in Supplementary data).

Fig. 1 shows all the stages of the method. Physical examination
missing data were replaced using iterative robust model-based
imputation (IRMI) [13]. This technique consists on initializing
missing values and then iteratively perform linear regressions of
each column with respect to the others. The initialization begins by
searching the lower limbs with the nearest physical examination
profile considering only the non-missing data with a k-Nearest
Neighbor algorithm [14] for k = 5 and ends by replacing each
missing value by the median over the 5 nearest neighbors.

Kinematic data were automatically segmented into gait cycles
utilizing the high pass algorithm (HPA) [15]. Then gait cycles were
resampled and normalized to 51 points (2% of gait cycle) as in [16]
and mean gait cycles were computed for each limb. A right and a
left kinematic preoperative gait vectors were composed with the
fifteen kinematic signals of both limbs normalized respectively by

Fig. 1. Method stages from CGA and physical examination data (see Supplementary data) to prediction. Kinematic signals were segmented into gait cycles and normalized to
51 points per angle and cycle. Missing data from physical examination were imputed with the IRMI algorithm. The dimension of the concatenated vectors of preprocessed
kinematics and physical examination data (see Supplementary data) was reduced using PCA. Then a multiple linear regression between postoperative kinematics and the
low-dimensional preoperative vectors and surgery codes was performed. Confidence intervals with 80% reliability were computed.
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