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a b s t r a c t 

We propose a deep recurrent belief network with distributed time delays for learning multivariate Gaus- 

sians. Learning long time delays in deep belief networks is difficult due to the problem of vanishing 

or exploding gradients with increase in delay. To mitigate this problem and improve the transparency 

of learning time-delays, we introduce the use of Gaussian networks with time-delays to initialize the 

weights of each hidden neuron. From our knowledge of time delays, it is possible to learn the long de- 

lays from short delays in a hierarchical manner. In contrast to previous works, here dynamic Gaussian 

Bayesian networks over training samples are evolved using Markov Chain Monte Carlo to determine the 

initial weights of each hidden layer of neurons. In this way, the time-delayed network motifs of increasing 

Markov order across layers can be modeled hierarchically using a deep model. To validate the proposed 

Variable-order Belief Network (VBN) framework, it is applied for modeling word dependencies in text. 

To explore the generality of VBN, it is further considered for a real-world scenario where the dynamic 

movements of basketball players are modeled. Experimental results obtained showed that the proposed 

VBN could achieve over 30% improvement in accuracy on real-world scenarios compared to the state-of- 

the-art baselines. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Dynamic Gaussian networks (GN) have shown success in cap- 

turing temporal characteristics of data in sports and text process- 

ing [1] . They assume an underlying hidden state of a dynamic sys- 

tem evolving over time. For example, in basketball, the structure 

of the GN can be learned from the temporal movement of players 

over time and determine the differences in offensive formations 

between expert and beginners. Hence, the directed edges repre- 

sent causal dependencies among the players and the time-delays 

associated with the edges define the dynamics. Dynamic GN are 

stochastic models where learning involves enumerating different 

local connectivity patterns consisting of child nodes given parent 

nodes at the previous two or three time points that may re-occur 

Abbreviations: BN = , Bayesian Network; CD = , Contrastive Divergence; DBN = , 

Deep Belief Network; GN = , Gaussian Network; RNN = , Recurrent Neural Network; 

V BN = , Variable-order Belief Network; M CM C = , Markov Chain Monte Carlo; ML = , 

Maximum Likelihood; MVAR = , Multivariate Autoregression; RBM = , Restricted 

Boltzmann Machine. 
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in one or more classes [2] . Such a directed sub-graph is referred to 

as a ‘network motif’. 

Although, GN outperform state-of-the-art classifiers including 

Bayesian Networks (BN) and Differential equations [3] , training 

them requires large number of time samples. Hence, in this paper 

we consider a framework similar to feed-forward neural networks 

and extreme learning machines that can automatically learn tem- 

poral features with long term memory in a fast and easy manner 

with minimal human intervention and limited time samples [4,5] . 

Further, GN need to use additional memory nodes to learn time 

delays. Hence, the total number of nodes and motifs increases 

exponentially at very long delays, making it computationally in- 

tractable. Conditional random fields alleviate this problem by ap- 

proximating a very long delay as a cascade of short delays to 

summarize text [6] . However, in long documents or reviews this 

can lead to formation of long and overlapping loops. Our goal is 

to efficiently predict the next class label in a sequence for high- 

dimensional networks and this can be done using the hierarchical 

structure of deep neural networks. 

Recently, recurrent neural networks (RNN) have exhibited good 

performance for modeling temporal structures with few training 

samples [7] . This is because bi-directional RNN can model not only 
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Notations 

x i ( τ ) Expression level of node i at time instant τ
θi Parameters for node i in the Bayesian network 

a i Parent set of a node i 

N Number of variables in the system 

v i Node i in the visible layer 

h j Node j in the hidden layer 

T Number of data samples 

r index for order of delay 

R The upper-bound of delay 

n l The number of nodes in the layer l 

l Index for a hidden layer 

L Total number of layers 

f Activation function of each hidden neuron 

g ( x ( τ )) Joint probability over all nodes at time instant τ
W l Weights of the hidden layer l 

W r Weights of r -order edges among visible nodes 

α Learning rate of a DBN 

S Gaussian network 

the past but also the future that is useful in sentence comple- 

tion tasks [8] . However, RNN require additional memory neurons 

to model each time delay and training becomes difficult as the gra- 

dient declines sharply with increasing delay. This can also result 

in unstable convergence, as the Hessian matrix of second-order 

derivatives does not exist for many real datasets. 

The main difference from the work done in [9] is that instead 

of resorting to Hessian free optimization to learn RNN with time- 

delays, we take cue from the fact that RNN are deep neural net- 

works with weight sharing across time. Hence, we consider deep 

learning where hierarchies of modules can provide a compact rep- 

resentation to temporal features in the form of input-output pairs. 

Contrary to previous approaches, we propose a variable-order deep 

Belief Network (VBN) that uses a dynamic Gaussian Bayesian net- 

work and Markov Chain Monte Carlo (MCMC) sampling to reduce 

the dimensionality of temporal problems without any loss of infor- 

mation. This is achieved from our knowledge of time delays; we 

can learn short delays independent of long delays in a hierarchi- 

cal manner, since the former is a part of the latter. Here, we train 

each additional hidden layer of neurons with recurrent motifs ex- 

tracted from the time series data of increasing Markov order using 

dynamic Gaussian Bayesian networks. 

In order to reduce the complexity of the model each hidden 

layer is a restricted Boltzmann machine (RBM) that is learned in- 

dependent of the others. In particular, to train the proposed VBN, 

we extract time-delayed features in the form of dynamic network 

motifs from the original time series using MCMC. Fig. 1 (a) illus- 

trates a deep belief network where the input nodes are a connec- 

tivity matrix of width N; the maximum order of delay is R and 

there are L RBM layers. Given input vector x , each hidden neuron 

in the l th RBM layer is designed to learn weights W 

l 
i j 

. Fig. 1 (b) il- 

lustrates l -order hidden neurons that learns from the inputs with 

up-to l -order time delays to arrive at the weights W 

l 
j 

of hidden 

neuron j . In contrast to previous methods of duplicating neurons 

to model time-delays, here dynamic Gaussian Bayesian networks 

over training motifs are evolved using Markov Chain Monte Carlo 

to perturb the initial weights of each hidden layer of neurons to 

include time-delays. VBN does not require any additional memory 

neurons as delays are cascaded. In this way they do not need to 

pass through the non-linearity at each time point and the loss in 

gradient is much lower than in the case of RNN. 

For instance, the number of possible first-order time delayed 

features is exponential; hence if we initialize the weights of the 

hidden neurons of first RBM layer using high probability first-order 

motifs, it is then much easier to train using contrastive divergence. 

Similarly, for the second RBM layer we initialize the weights us- 

ing high probability second-order motifs. Since, both the first and 

second-order network motifs are learned from the same training 

data, they will belong to the same distribution. 

Further, as explained in [10,11] , in such a layered model, the 

features or network motifs learned in the first layer become input 

to the second layer and so on. For example, the first RBM layer 

will learn network motif representations with only first-order time 

delays by minimizing the error between each initial motif and the 

corresponding motif predicted by the hidden neurons in the train- 

ing data. Next, the training motifs are evolved to include second- 

order time delayed edges prior to training the second RBM layer. 

The first RBM layer will now try to emit each second-order time 

delayed edge as a cascade of two first-order time delayed edges 

occurring in different features that will become the input to the 

second RBM layer. 

In such a hierarchy of predictors, the input at any given time 

at one level is coming from the previous level. Hence, it is suf- 

ficient to know those elements of the input data that were not 

correctly predicted. The error function of each module forces it to 

emit a learned target representation in the input data. If the mod- 

ule makes an error, the unpredicted input will be transformed to 

a unique representation and send to the next higher module. To 

our knowledge, such a framework that can combine small delays 

to model long delays via deep MCMC sampling has previously not 

been proposed. 

2. Related work and contributions 

Depending on the problem, learning in a neural network may 

require long causal chains of computational stages. To reduce the 

redundancy in the data and consequently depth of the model, un- 

supervised learning methods such as Boltzmann machines are used 

that maximize the entropy related information [12] . Unsupervised 

learning can automatically generate sparse representations of in- 

puts using well-known feature detectors such as edge detectors or 

Gabor filters. From then on, only unexpected inputs (errors) convey 

new information and are fed to the next higher layer. For each in- 

dividual input sequence, we get a series of less and less redundant 

encoding in deeper and deeper levels also known as history com- 

pression. In convolution NN, a filter of shared weights is shifted 

step by step over a 2D array of inputs resulting in massive weight 

sharing. Each convolution layer is inter-leaved with a max-pooling 

layer [13] . In max pooling, each convolution layer is replaced by 

a down sampling layer by the activation of its maximally active 

unit. By eliminating non-maximal values, it can reduce redundan- 

cies due to convolution. 

Finally, Deep Belief Network (DBN) is a stack of Restricted Boltz- 

mann Machines [14] . Each RBM takes as input the pattern repre- 

sentations from the level below and learns to encode them in an 

unsupervised fashion. Occam’s razor suggests that a NN with low 

weight complexity corresponds to high NN accuracy without over 

fitting to training data. Each RBM layer results in a reduction in 

dimensionality of the input as long as the number of hidden neu- 

rons is lower than previous layer. Hence, the corresponding mini- 

mum description length of the data or the negative log probability 

of the data will keep improving [15] . Lastly, the DBN can be fine- 

tuned using back-propagation. 

Computing the probability of an RBM is difficult, as the nor- 

malization constant requires summation over all possible config- 

urations of the hidden neurons. In [16] the authors proposed a 

heuristic approach called Contrastive Divergence(CD) that tries to 

minimize the Kullback–Leibler divergence between the input sam- 

ples and target distribution. Here, we use Gibbs sampling over each 
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