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a  b  s  t  r  a  c  t

Accurate  annotation  of  protein  function  is key  to understanding  life  at  the  molecular  level, but  auto-
mated  annotation  of  functions  is challenging.  We  here  demonstrate  the  combination  of  a method  for
protein  function  annotation  that uses  network  information  to  predict  the  biological  processes  a  protein
is  involved  in,  with  a sequence-based  prediction  method.  The  combined  function  prediction  is based  on
co-expression  networks  and  combines  the network-based  prediction  method  BMRF  with  the sequence-
based  prediction  method  Argot2.  The  combination  shows  significantly  improved  performance  compared
to  each  of  the  methods  separately,  as  well  as compared  to  Blast2GO.  The  approach  was  applied  to  predict
biological  processes  for  the  proteomes  of  rice,  barrel  clover,  poplar,  soybean  and  tomato.  The  novel  func-
tion  predictions  are  available  at www.ab.wur.nl/bmrf. Analysis  of the  relationships  between  sequence
similarity  and predicted  function  similarity  identifies  numerous  cases  of  divergence  of  biological  pro-
cesses  in  which  proteins  are  involved,  in  spite  of  sequence  similarity.  This  indicates  that  the integration
of  network-based  and sequence-based  function  prediction  is helpful  towards  the  analysis  of  evolutionary
relationships.  Examples  of potential  divergence  are  identified  for various  biological  processes,  notably  for
processes  related  to  cell development,  regulation,  and  response  to chemical  stimulus.  Such  divergence
in biological  process  annotation  for  proteins  with  similar  sequences  should  be taken  into  account  when
analyzing  plant  gene  and  genome  evolution.

DATA: All  gene  functions  predictions  are  available  online  (http://www.ab.wur.nl/bmrf/). The  online
resource  can  be  queried  for  predictions  of  proteins  or  for Gene  Ontology  terms  of  interest,  and  the  results
can  be  downloaded  in  bulk. Queries  can  be based  on  protein  identifiers,  biological  process  Gene  Ontology
identifiers,  or  text  descriptors  of biological  processes.

©  2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY-NC-SA
license  (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

The amount of plant genome data grows disproportional to the
amount of available experimental data on these genomes [1–5]. To
connect this ever increasing amount of genome data to plant biol-
ogy, structural gene annotation followed by function annotation
is imperative. For example, the identification of candidate genes
involved in a trait of interest greatly benefits from gene function
annotation [6]. In the context of the study of genome evolution,
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gene function annotations are necessary in order to enable com-
parison between sets of genes with different evolutionary histories,
e.g. those retained vs. those lost after duplication [7]. To annotate
gene or protein function, experimental data, if available, can be
used to annotate gene or protein function. However, the scarcity of
experimental data highlights the attractiveness of computational
approaches to assist in gene function annotation [8]. Indeed, newly
sequenced genomes are in general accompanied by a function
annotation which heavily relies on computational predictions. Such
automated annotations are delivered by a variety of approaches,
often without much knowledge about their reliability. For study-
ing plant genomes and plant genome evolution, reliable function
annotation is therefore a major challenge.

One way to annotate proteins without experimental data is
to infer function from sequence data [3]. The de facto standard
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to capture function annotation today is the Gene Ontology (GO),
in particular, the Molecular Function (MF) and Biological Process
(BP) sub-ontologies [9]. MF  describes activities, such as catalytic
or binding activities, that occur at the molecular level, whereas BP
describes a series of events accomplished by one or more ordered
assemblies of molecular functions [9]. Compared to MF,  terms in the
BP ontology are generally associated with more conceptual levels
of function; BP terms describe the execution of one or more molec-
ular function instances working together to accomplish a certain
biological objective. The prediction of BP terms can depend on the
cellular and organismal context [10]. Therefore, BP terms tend to
be poorly predicted by methods based on sequence similarity only,
such as BLAST [10,11]. The reliability of BP predictions increases
with advanced approaches that employ, e.g., phylogenetic frame-
works [12,13] or network data such as protein–protein interactions
[14].

We  recently developed a protein function prediction method for
BP terms called Bayesian Markov Random Field (BMRF) [15], which
uses network data as input. In BMRF, each protein is represented
as a node in the network, and connections in the network indi-
cate functional relationships between proteins. Networks can be
based on, e.g., protein–protein interactions or co-expression data.
BMRF uses existing BP annotations for proteins in the network
to infer biological processes for unannotated proteins in that net-
work. To do so, BMRF uses a statistical model describing how likely
neighbors are to participate in the same BP; this constitutes the
Markov Random Field. Existing BP annotations are used as “seed”
or “training” data, providing a set of initial labels for the Markov
Random Field. Parameters in the statistical model are trained using
a Bayesian approach by performing simultaneous estimation of
the model parameters and prediction of protein functions. Impor-
tantly, BMRF can transfer functional information beyond direct
interactions. Therefore, it is able to generate function predictions
for proteins that are only linked with other proteins with unknown
function.

In the Critical Assessment of Function Annotations (CAFA)
protein function prediction challenge [10] BMRF obtained partic-
ularly good performance in human (first place) and Arabidopsis
(second place) for BP term prediction [10]. In these species,
BMRF performance benefits from the wealth of existing func-
tion annotation, i.e. experimental data. Because of its dependence
on training data, function annotation for species with more
sparse function annotation is challenging for BMRF. To improve
the prediction performance in sparsely annotated species, we
present here a strategy to combine BMRF with the sequence-
based function prediction method Argot2 [16]. Argot2 was  among
the top performing sequence-based algorithms in the CAFA cat-
egory “eukaryotic BP”. In its computational approach Argot2
is complementary to BMRF, because it is purely sequence-
based.

We  demonstrate that a combination of Argot2 and BMRF has
a markedly better function prediction performance than each
method separately. This integrated method was applied to predict
BP terms for proteins in five plant species, Medicago truncatula (bar-
rel clover), Oryza sativa (rice), Populus trichocarpa (poplar), Glycine
max (soybean) and Solanum lycopersicum (tomato), using microar-
ray co-expression networks as input. Numerous new proteins were
associated with specific biological processes, such as seed devel-
opment in rice or nitrogen fixation in Medicago. By comparison
between sequence divergence and predicted function divergence,
numerous cases of putative neo-functionalization involving vari-
ous biological processes were identified. This new method and the
resulting set of predicted gene functions will be of great value in
capitalizing on the large amount of plant genome data that is cur-
rently being generated for the study of the evolution of genome and
gene function.

2. Results

2.1. Method development and evaluation

We  previously developed the protein function prediction
method BMRF and used it to annotate protein function in Arabidop-
sis thaliana [17]. This method relies, besides on network data, on
existing function annotation as input. For Arabidopsis, we demon-
strated that the amount of available annotation (training) data was
sufficient to achieve a good prediction performance [17]. However,
for crop species, much less annotation data is available as input.
To increase the overall function prediction performance for plants
with sparse experimental data, we explored combining BMRF with
the sequence-based method Argot2.

Argot2 and BMRF were tested separately (standalone setting)
or in two  combinations (Fig. 1). Performance assessment focussed
on rice, the crop with the largest amount of annotation data
available: 415 proteins with experimental evidence for a bio-
logical process. The rice network used as input for BMRF was
obtained from a combination of microarray-based co-expression
data, data from STRING [18] and FunctionalNet [19] (Table S1). Of
the 415 proteins with experimental evidence, 394 were present
in the network, and were used for validation of predicted func-
tions.

Function prediction performance was assessed on the basis
of cross-validation, leaving out randomly selected proteins with
known function and comparing the predictions with those data.
The area under the receiver operator characteristic curve (AUC)
was used to compare the performance of the predictions that
come as ordered lists of predicted proteins per biological pro-
cess. In the standalone setting (Fig. 1A and B) with rice sequence
and network data, BMRF and Argot2 both have a low perfor-
mance, with AUC (average ± standard deviation) of 0.6 ± 0.12 and
0.67 ± 0.11, respectively (Tables 1 and S2). These values are con-
siderably lower than the AUC previously obtained with BMRF for
Arabidopsis (0.75) [17] due to the small amount of training data
(annotated gene functions) that is available for rice. Assuming
information from Arabidopsis would improve the performance
of rice protein function predictions in BMRF, we  connected pro-
teins in an available Arabidopsis network (Table S1) to proteins
in the rice network based on sequence similarity using BLAST.
With this rice-Arabidopsis interspecies network in addition to
the networks of both species separately (Fig. 1C), BMRF per-
formed slightly better than Argot2 (AUC 0.70 ± 0.12). The precise
value of the BLAST E-value cut-off used to create the interspecies
network did not influence the performance of BMRF (data not
shown).

Both methods use complimentary information about biological
processes (network input for BMRF, sequence input for Argot2).
Therefore, we  tested combining the two. Argot2 and BMRF can be
combined in multiple ways. We used a simple rank-based approach

Table 1
Prediction performance for rice protein function of various combinations of methods
and  input datasets.

Network Methoda AUCb

(i) Rice only BMRF 0.60 (0.12)
(ii)  Rice only Argot2 0.67 (0.11)
(iii) Arabidopsis and rice combined BMRF 0.70 (0.12)
(iv)  Arabidopsis and rice combined Blast2GO 0.72 (0.13)
(v)  Arabidopsis and rice combined Argot2 + BMRF 0.71 (0.12)
(vi)  Arabidopsis and rice combined Argot2 → BMRF 0.83 (0.15)

a Methods analyzed were BMRF, Argot2, Blast2GO, Argot2 + BMRF (rank sum) and
Argot2 → BMRF (seeding). Rice network was used separately (rice only), or it was
connected to an Arabidopsis network based on sequence similarity (combined).

b Area under the curve; mean (standard deviation).
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