ELSEVIER

Contents lists available at ScienceDirect

Journal of Pediatric Surgery

journal homepage: www.elsevier.com/locate/jpedsurg

The molecular impact of omega 3 fatty acids on hepatic pro-inflammatory cytokine signaling

George J. Ventro^{a,b}, Yingkui Yang^a, Min Chen^a, Carroll M. Harmon^{a,b,*}

^a State University of New York, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Department of Surgery, Buffalo, NY ^b Women and Children's Hospital of Buffalo, Buffalo, NY

Women and Children's Hospital of Dajjalo, Dajjalo, F

ARTICLE INFO

Article history:

Keywords:

Omegaven

PNALD

PON1

IFALD

TNF-α TGF-β

IL-1

Received 6 March 2017

Accepted 9 March 2017

ABSTRACT

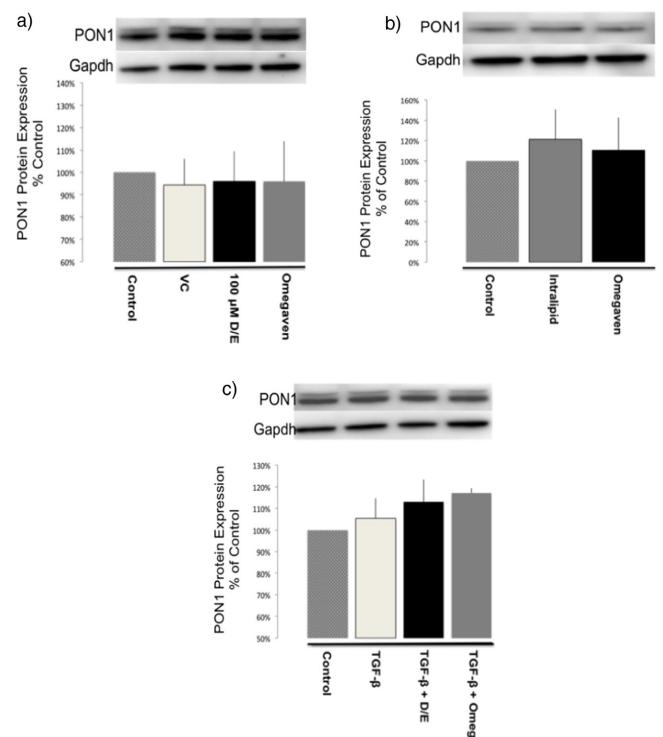
Purpose: Parenteral nutrition associated liver disease (PNALD) develops in a subset of children receiving parenteral nutrition for intestinal failure. OmegavenTM is an omega-3 fatty acid (Ω 3FA) lipid emulsion high in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) that can lessen PNALD. Inflammatory cytokines (IL-1, TNF- α , TGF- β) are elevated in PNALD and can decrease paraoxonase 1 protein expression (PON1). We sought to determine the effect of OmegavenTM, EPA, and DHA on inflammatory cytokines TNF- α , IL-1, and TGF- β via ERK1/2 and p-Smad2/3 signaling pathways as well as the changes in intracellular PON1 protein expression as a potential mechanism explaining the protective effects of OmegavenTM and Ω 3FA.

Methods: HepG2 cells were cultured with each cytokine and Omegaven[™], or EPA and DHA, or Intralipid[™]. P-Smad2/3 and PON1 protein levels were measured by Western blotting. ERK1/2 signaling was studied using homogenous time resolved fluorescence.

Results: OmegavenTM decreased TGF- β mediated Smad2/3 signaling by 30% (70% of control \pm 12, p < 0.03). OmegavenTM decreased IL-1 and TNF- α mediated ERK1/2 signaling (0.49 fold \pm 0.09, p < 0.05 and 0.22 \pm 0.05, p < 0.05) compared to control.

Conclusion: Our results describe potential mechanisms by which Ω and Ω 3FA can be hepatoprotective in the setting of PNALD by abating inflammatory cytokine signaling.

© 2017 Published by Elsevier Inc.


Short bowel syndrome (SBS) is a form of intestinal failure that results from inadequate length of small intestine to fully digest and absorb nutrients and calories [1]. Parenteral nutrition associated liver disease (PNALD) occurs in 40%-60% of infants and children receiving prolonged courses of life-saving parenteral nutrition (PN) for the treatment of conditions causing intestinal failure, including SBS [2]. The disease spectrum of PNALD includes steatosis, cholestasis, fibrosis, and ultimately cirrhosis [3]. The pathogenesis driving PNALD remains incompletely understood. The current FDA approved lipid emulsion, Intralipid®, is a 100% soybean oil-based lipid emulsion that contains predominantly omega-6 fatty acids, which may contribute to the progression of PNALD [3]. Treatment options for PNALD include stopping the TPN, decreasing lipid calories, reintroducing enteral feeds, and/or switching to other lipid sources such as Omegaven[™] [3]. Omegaven[™] is a fish oil-based lipid emulsion that is high in omega-3 fatty acids (Ω 3FA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) [4,5]. Several published case reports suggest Omegaven[™] has lessened and even reversed some stages of PNALD, however, the mechanisms of this effect are unknown [4,5].

E-mail address: charmon@kaleidahealth.org (C.M. Harmon).

In the early stages of PNALD, the liver undergoes inflammatory changes. Inflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF- α), have been shown to be elevated in PNALD and to directly contribute to liver injury [6–8]. Studies have also demonstrated that the aforementioned inflammatory pathways can activate the transforming growth factor beta (TGF- β) pathway, which may contribute to further hepatocellular damage and fibrosis [8,9]. Paraoxonase 1 (PON1) is an antioxidant protein that is mainly synthesized and released by the liver [10]. It possesses lactonase activity and hydrolyzes lipid peroxides [11]. Systemically, it circulates in plasma bound to high density lipoprotein (HDL) and is thought to play an important anti-inflammatory role [10,11]. Previous studies demonstrate that the inflammatory cytokines IL-1 and TNF- α decrease PON1 mRNA levels but these studies did not include an analysis of PON1 protein expression [12]. To date, there is a paucity of data relating inflammatory cytokine pathways to PON1 protein expression and the role that Ω 3FA might play in these pathways and on PON1. The aim of this study is to further understand the protective effects of Omegaven[™], including its key components, Ω 3FA, DHA, and EPA on IL-1, TNF- α , and TGF-\beta-mediated signaling pathways and liver damage in an in vitro model of PNALD.

We hypothesize that the damaging effects of cytokines will result in a decrease in PON1 protein expression and that this effect will be prevented by OmegavenTM.

^{*} Corresponding author at: Department of Surgery, State University of New York at Buffalo, 875 Ellicott ST, Clinical and Translational Research Center, Buffalo, NY 14223.

Fig. 1. (a) Bar graph and representative Western blot showing no statistical difference in PON1 protein expression when treated with controls, Ω 3FA, or OmegavenTM. (b) Bar graph and Western blot showing no statistically significant difference between treatment and control, IntralipidTM, or OmegavenTM on PON1 protein expression. (c) Bar graph and representative Western blot showing no statistical effect of TGF- β on PON1 protein expression. VC = Vehicle control, ethanol. D/E = 100 μ M DHA + EPA. n = 3.

1. Methods

1.1. Cell culture

Human hepatic HepG2 cells were cultured and maintained in Dulbecco's Modified Eagle's Medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented with 10% heat-inactivated FBS in 100 mm plastic plates and kept between 50% to 80% confluence. Cells were plated in six well plates at 3×10^6 per well and allowed to adhere overnight. Cells were

then treated with DMEM supplemented with either 20% OmegavenTM (Fresenius SE & Co. KgaA, Bad Homburg, Germany) 20% Intralipid® (Fresenius SE & Co. KgaA, Bad Homburg, Germany), or a 100 μ M mixture of DHA and EPA (Cayman Chemical, Ann Arbor, MI) in DMEM for 1 h, followed by the addition of either TNF- α (50 ng/mL) or IL-1 (50 ng/mL) for another 16 h. TGF- β was also used (50 ng/mL) and treated cells were incubated overnight for PON1 analysis or 60 min for p-Smad2/3 analysis as described previously [13]. Cells were harvested, lysed, and PON1 and p-Smad2/3 expression was measured by Western blot analysis.

Download English Version:

https://daneshyari.com/en/article/5718512

Download Persian Version:

https://daneshyari.com/article/5718512

Daneshyari.com